
w\

45" UNLIMITED

AD-A24 1 658w
Report No. 91022

CD ROYAL SIGNALS AND RADAR ESTABLISHMENT,
0 J MALVERN
z
0

AN EXAMPLE MACHINE USED FOR
DEVELOPING A PROOF STRATEGY FOR

SECURE SYSTEMS

Author: P F Terryt

DTI
At-LE40TIK
3CT 181991]U

91-13475
t Capella Research Ltd

29 Sandown Close, Blackwater

Camberley, Surrey GU17 OEN

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE
RSRE -b oN STATID A
Malvem, Worestershire. I _ _ _ _ __ _ A

Apirov.d ice pwo reouu- April 1991

UNLIMITED

9 I 1,0I

CONDITIONS OF RELEASE
0107298 304043

.... DRIC U

COPYRIGHT1 (c)
1988
CONTROLLER
HPASO LONDON

.... RIC Y

Reports quoted are not necessarily available to members of the public or to commercial
organisations-

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 91022

Title: An Example Machine used for Developing a Proof Strategy for Secure Systems

Author: P F Terry t

Date: April 1991

Abstract
This report describes a machine which is an abstraction of the archetypal Cr- mand, Control, Communications and
Information (C31) system which system de ielopers meet in procurement requests, operational requirements, invitation,
to tender, etc, from government and militar agencies.

The purpose of this report is to set the scopx of coiiipiexity of structure, functionality and policy which we believe the
S%1lTE approach to secure systems development can encompass. It thus provides backgrnund and motivation for future
research and encourages those involved in .,cre systems procurement to investigate further the SNUTE approach.

The Abstract Mtachine is first described in English with pictures and subsequently in the Z specification language.

This report has been furnished for use by Her Majesty's Government under the terms and conditions of contract
SLS42c/72O from the Defence Research Agency. Electronics Division.

f Capella Research Limited
29 Sandown Close
Blackwater
Cambericy
Surrey, GUI7 0EN

Copyright Controller HMSO London / Capella Research Limited © 1991

K - -1

Contents

Introduction ... 1

2. Overview of Machine Structure, -tuncionality and Policy 2
2.1. Basic Structure and Functionality 2

2.1.1. The Basic Typed Entities ... 2
2.1.2. Labels, Roles and Certificates 6
2.1.3. inner Labels and Label Objects 10
2.1.4. Certificates and Inner Roles 12
2.1.5. Join Entities .. 13
2.1.6. Complex Sources ... 13

2.2. The Persistent, Passive, Storage Structure 14
2.2.1. The Open and Examine Commands 15
2.2.2. The Read and Write Commands 15
2.2.3. The Create and Delete Commands 15

2.3. The Transient, Active, Proms Struciure 16
2.3.1. The Read and Write Path Commands 16
? 3,2 T.. C -- - ' - 16
2.3.3. The Read and Write Gamma Commands 16
2.3.4. The Join Command.. 17

2.4. User Registration/Deregistration .. 17
2.4.1. The Registration Request Commands 17
2.4.2. The Ceiiif icate u...ands 17

2.5. U ,er Activation/Deactivation .. 17
2.6. D ow ngrade ... 18

The Z Specification of the Abstract Machine 18

Aesion For"

NTIS CRA&I

DTIC TAR l

~Di~t rbutiJon/J

-vniabiltty Codas
iAvali andio,

iDist i Speoial

w -------- ,.--- -- - - N--

1. Introduction

T.s document describes a machine which is an abstraction of the archetypal Command, Control, Communications and
infunrmation (C 31) system which system developers mee! in pro,-ure'nent reouests, operational requirements, invitations
to tender, etc, from government and military agencies.

The machine is abstract in the sense that it generalises the features found in such machines and not i.; the sense that it
simplifies the features to the point of non-existence.

For example, real machines have a complex structure, a persistent storage structure, usually a hierarchy for filing
systems but potentially attaining the complexity of a relational database, which interacts with a transient process
structure, user processes and sub-processes, system services, etc. In abstract models, such as formal policy models,
this may be reduced ad absurdum to a subject/object matrix. The abstract machine of this document retains the
essential structure evident in real systems.

Similarly, in real machines there are many different types of az,:sses to ,,nny different types of objects, not all of
which can be abstracted to simple notions of read access and write access. The abstract machine maintains this
fundamental diversity of access while abstracting out unnecessary repetition. Hence, reading a document, reading a draft
document, reading a telex, etc, may all be represented by a single read file operation but the fundamental distinction
between reading a file and "reading" a directory might be maintained.

Finally, real procurement machines tend to have complex policy requirements, no less rigourously required to be
cr-,i, t, tA. Wdion the simple no-i'iws-down conce.2: of ahstract lattice models of security. The abstract machine
we describe, in addition to the usual no read up, no write down checks, embodies a simple abstract implementation of
separation of duties which we believe allows sach issues as downgrade in he addressed with equal assurance.

The document describes the Abstract Machine first in English with pictures and subscqcntiy in the Z spcificazuon
language. The latter simply serves to remove ambiguity inherent in any Erz,';h description of a machine, it does not
in any sense serve to prove the secunty of the machine described. For such a tormal statement of the specification and
policy together with a proof that the machine upholds the policy see [CRL-720-TR-06/A].

The purpose of this document is to set the scope of complexity of structure, functionality and policy which we believe
cOe SMITE approach to secure systems development can encompass. It thus provides background and motivation to
Lie subsequent reports and encourages those involved in secure systems procurement to investigate further the SMITE
approach.

While we positively encourage developers to investigate our approach as a better route to high-assurance system
development a note of caution is in order lest we raise expectations to unrealistic levels.

The abstract machine described in this document is undoubtedly more realistic than other specifications which make the
same claims for proof assurance. However, it is still a design not an implementation. There are thus still many
hurdles to cover. We do no(claim to have removed all of these, we just claim that we are more advanced than extant
appr ches.

On the other hand, the machine described herein is not the absolute limit of complexity which we believe the SMITE
approach can handle. If a machine for which one wished to apply this approach exceeded the capabilities of the machine
described herein, one should not take this as evidence that the SMITE approach is not applicable. The machine
described herein was chosen on the basis of exhibiting a coherent, balanced set of capabilities which capture the bulk of
the features seen in most procurements and which constitutes a sufficient advance over extant approaches to justify the
expense of switching to a "new" approach. It was also chosen to remain sufficiently simple that we can demonstrate
the tractability of the approach, by actually doing the proofs, within the bounds of a research project. We are fainy
confident that relaxations of the constraints in the abstract machine can be accommodated within the approach but it is
our intention to only claim and describe such extensions as we demonstrate their tractability. The abstract machine
therefore should be regarded as our first "stick in the ground" which forms the basis for further incremental research and
investigation.

In the attempt to motivate the machines structure and functionality in the English overview the various components are
described with examples drawn from the usual melee of entities which developers are used to meeting in procurement
descriptions of such machines. Thus we use examples such as untrusted processes, fides and directories, trusted kernel
system services, etc. The Z specification and ultimately the formal apparatus used to conduct the proofs are deliberately
phrased in less emotive terms of alpha entities, gamma entities, etc, in order to avoid emphasising such connotations.
While the specification undeniably can be used with such interpretations, it is not limited to such interpretations. In
fact, the intended implementation strategy envisages the use of protection facilities at a much finer gram than the ub.al
TCB process/file granularity and great effort has been expended, both in the abstract machine specification and the proof
strategy, not to preclude such use.

2. Overw:ew of Machine Structure, Functionality and Policy

2.1. Basic Structure and Functionality

We identify a system as consisting of a finite set of entities, where entities are any tangible aspect of the machine
which are the subject of manipulation by the functionality of the system.

We consider entities to have attributes, size, colour, shape, etc, of which the primary attribute is that entities are typed.
Thus entities may be files, directories, command line interpreer, 10 devices, untrusted processes, system services, etc.

As well as having attributes, entities are considered to h..ee relationships to other entities. Thus files may have a
parent directory, sibling files, etc. A process executing a program may have access to an 10 device and some directory
or file. There is a concept that an entity may use some of its attributes to select from amongst a number of entities to
which it is related. Thus, the proces ,r.ay use some ,f .ts daa attribues, a name str.ig, to select from the directory to
which it has access, one of the files for further access. Having executed such an "open" command the process will
now have a new relationship to a new file entity, an open file descriptor.

Using these relationships and entity type attributes, the command repertoire of the machine will define the p.-%ssible
strcture of the machine, given some initial state structure.

Thus, it is not possible to give an exact picture of the machine but rather we can only demonstrate a gross pattern to
which all instances of it will conform and to give a few representative examples of the effects of the commands. The
Z specification of szction 3 on the other hand precisely defines the machine solely by listing the attributes and
relationships of the initial state and defining the -epertoire of commands.

In this section wc shall do this a little more aLce-ibly by using a pictorial representation.

To capture the functionality and security characteristics of our archetype machO-. it is necessary for Ls to define six
sorts of attribute and a single structural relationship. Of the six at.ribute sorts, four are used to frame the
mechanisation of the security policy. Before examining these we shall first present the application functionality and
the structure of the machine alone - in effect the insecure, commercial variant of our abstract machine.

2.1.1 The Basic Typed Entities

For this we need only the notion that entities have data attributes and are typed. The single structural relationship is a
graph. This is not completely arbitrary but the .onstrainu and structure can only be explained once the main entity
types have been introduced.

Entities are typed into the following types.

Alpha . Loosely these can be thought of as the persistent storage objects of a conventional
hierarchical filing system, except that they cover both the non-terminal directories and tne leaf
files.

Trusted Path • These represent the fixed 10 devices of the system together with associated trustworthy
software drivers.

User 0 These represent processes running trusted command line interpreter code and which
communicate with the human user via a trusted path. They are thus an accountable proxy to
the human user.

Certificate . These are used in mechanising aspects of the security policy which depend on separation of
duty in the form of n-person rules. The certificates represent passive indications of the
agreement of a person to some action and act in effect as signed forms of approval in the same
way as in the real world certain procedures require "forms in triplicate with all the necessary
signatures".

Gamma • These represent processes running untrusted code.

The essential structure of the machine in terms of the persistent storage objects is then pictured as follows

2

L

Shared Hierarchy

User PrivatC Hierarchy User Private Hierarchy

Figure 1.

Root, A, B, C, D, a, b, c, x, y, z, and the two home directories are all alpha entities. The certificates are stored in the
alpha structure and serve in this case to separate the private storage areas of users, represented when not logged in by
the home directories, froim the common shared storage area represented here by the hierarchy A,B,CD. The trusted path
entities, labeled ports in the diagram, are also considered to be stored in the alpha structure as shown. They are shown
drop-shadowed to distinguish them as potentially active entities which instigate commands and state transitions, as
opposed to the passive nature of the other entities shown here as flat objects.

Root is a distinguished member of the alpha entities and is considered the starting point of what is essentially the
hierarchy which represents the entity relationships. The commands of the machine ensure that the pure alpha structures
from root, in this example A-D, and the pure alpha structures from the home directories, in this example a-c and x-z,
are all single rooted hierarchies with no cross links.

The multiple certificates pointing at an object are the single exception to this rule. The certificates shown here are
those required for an n-person authorisation of user logins, as we shall see later, this structure also occurs within the
/tared hierarchy when an alpha object is to be downgraded, again requiring n-person authorisation.

Login is modelled as a command instigated by a port entity which creates a user proxy entity cornected to the port,
root and the user's home directory thus,

3

Cetfcate]

User Hom

Figure 2.

Note that the user points into the existing structure and is therefore effectively a new root into what we like to think of
as an. essentially hierarchical structure. it is these effects which prevent us formally describing the overal! entuty
relationship as a hierarchy and yet does not entail that the relationship is an arbilrary graph in practice.

Commands are available which enable such a user entity to traverse the alpha hierarchies from root and its home
directory, and to modify these hierarchies by creating and deleting alpha entities. The user proxy is assumed to be a
trojan horse free, command line interpreter like, entity and all of its actions are assumed to be accountable to the human
user and initiated under the guidance of the human over the trusted path port. Such interc-''on is rovered h
commands which aliow the user proxy to read and write the port to which it is connected. It is the only entity which is
able io do this as only login creates such a connection. For simplicity we shall omit "he port and these interactions
from the diagrams leaving these asscmptions implicit.

So after user a,.ivity the user proxy could end up gaining connections to other entities thus,

4

Figure 3.

Commands are also provided for the u-er entity to read and write alpha entities. In practice, for reasons wc sh3i! se
when we consider the security policy repercussions on the functionality and structure of the machine, these commands
are not expected to be widely used in the users' accomplishment of their daily tasks. They are presented for
cor"ienes- and to allow a contrast to be shown between the functionality achic,4bic wih our absLrac! machie -nd
policy and extant policies where these commands would effecui,c U.", o;-,!v onc., La.able despite the extreme
limitations put on them by .hc ,ccuty policy.

In our approach users achieve their main tasks using untrusted software represented by gamma entities. User entities
are therefore nrovided with a set of commands for initiating, interacting with, and terminating gamma entities. Gamma
entities have available tih szme functinality as a user proxy in terms of interacting with the alpha storage structure,
thus they can traverse, create, delete, read and write alpha ,ititie:. Th-y do so however usini! a different set of
commands which enforce different security constraints from those imposed on user proxy entities. In essence wriereas
the user is free to modify the structure but is limited in reading and writing data the converse is true for gamma entities.
The constraints imposed by the security policy are such that they have only limited sce'pe for creating/deleting alpha
entities but are relatively free to read and write entities. It is this division which allows our approach to provide the
flexible functionality required by users without compromising the assurance of security.

Of course gamma entities are totally debarred from executing the commands used by the user entities which utilise
separation of duty, downgrade, certificate creation and manipulation, etc. We currently debar gamma entities from
spawning further gamma entities though this is not thought to be an inherent requirement of our approach.

Gamma machines do not communicate directly with the human user over the trusted path port device. Their only
access is to the user proxy which mediates such access. A gamma machine is in relation to iis user parent in much the
same way as the user is to the trusted path with the important exception that it is the user proxy parent which
instigates exchanges with the gamma entity, ie the user reads and writes both the gamma entity and the trusted path
port

A user may control many gamma entities either synchronously or asynchronously and the environment of each gamma
machine, in term.- of its visibility of the sharer1 anrl nrivate hi~rar,"hies. is determined by the user nroxy when the
gamma entity is instigated. Obviously, this must be a subset of that available to the user at the time it instigates the
gamma machine. Gamma machines are not constrained to work exclusively in the private or shared hierarchies but can
interwork as in this example.

5

Garrina

RcxA

A

Figure 4.

Before considering the structural and func, onal as.pets of creating and manipulating cerificates we must revic, our
po!icy assumptons as the interesting part of these transitions are the propagation and manipulatior. of the sccunt
attributes.

2.1.2. Labels, Roles and Certificates

The basic notions which underlie our policy models formulation of secunty can be paraphrased in the follo, in
examples in terms of entities and amributes.

When something happens on the machine, ie some aspect of the entities and attributes relationship or the structural
entity relationship changes, then information can be said to have flowed from some entities of the machine to some
others, from sources to destinations.

Most extant policies would simply insist that in order to maintain security the classificaton labels of the destinations

!hould dominate the labels of the sources. Extant policy models vary in hew c:mpletcly they capture the notion of
information flow. In ou model, information flow is defined in true information theorepc terms, thus sources are
identified not simply as those entities which are overtly observed in a transition but also those which only signal
information indirectly. For example, th,. instigator of a third party copy command while not explicitly observed
conveys information in its choice not only of which entities to copy from and to but simply by its choice of whether
or not to even &tempt the copy.

For the purposes of this overview we can consider such transitions of the system to consist of a single source entity
and a single destination. Consider the following transition

6

State Transition

A B

Dam Data

which represernLs A as a sourcc writing ivs data attribute into the dlestnation B. As with any polic, modc- ? r uhc-
s,-stem to be able to execute a decision procedure on whether or not this is permissible, libels are required On Lhic
enUitI es to reflect the sensitivity and handling requirements of the information hcld in that entity. Typically.ex,
ptolices would appear thus

Confidential Resrcted

Data

Figure 6.

In the state in which the transition w,,as, requested the source is riot dominated by the destination so this trasition would
be disallowed In our approch we would check if the transition was allowed by separation of dluty. This requires
additional labelling information about the individuals responsible for the disposition of information. Thus in our
approach the entities would have Iabels s follows

.7

Confidential George Mike Restricted

Data

Figure 7.

Our motivation is that if an enuty instigates a transition which moves information from some enuty to another vhich
does not dominate t then the instigaung entity must show that the responsible individuals for the sources of that
informaton agree to that transition. The individuals responsible for an entity's information content is signified b% a
cr,St hsc Fred and George and Harriet and Mike in the example. The agreement of these individuals is achie-ed ,tth
eruficates. For the sake of this example we will assume that A is also the instigator of the transition. For the
',a.uon Lo occur cerificates vhich concur with the transition and which are sigrxid by appropriate inidvidua: mut IX:

ti: the p oscssitn. of the insti:eonr 7T'hi r risrenie4 th)

Confidential Fred Harret RestrctedMike Retice

Figure 8.

The signature of a certificate is represnted by a role or identity attribute,

We could extend this idea by saying that as well as having the agreement of Fred and George to release the information
w,- also require the agreement of Harriet and Mike to assume responsibility for it. Apart from adding a little
complexity this does not essentially change the nature of the mechanism or the notion of separation of duty security.
Workshops on separation of duty notions have developed various classifications of such schemes, weak versus strong,
dynamic versus static, etc. All of these are easily adopted into this basic mechanism. For the purposes of our re-s&.arch
adding such syntactic complexity was not considered useful so the machine we have specified and proven use the
scheme outlined above.

In fact, even this simple scheme is actually more complex than pictured above As we have said our nooon of
information flow is complete and so in the transition pictured above not only is A a source, because it contributes data
and is the instigator, but so too are the certificates. This is beca,se their presence or absence and their concurrence with
the transition requested affect the outcome of the transition. The certificates themselves also have intrinsic information
content, itself protected by a classification label and a conflict list. thus unless care is taken inclusion of a certificate
may incur a requirement for more certificates in order to approve the total infurmation flow from the combined sources
of the transition to the entity B.

Also the above outline does not indicate how certificates store the information as to the exact transition that they are
intended to permit

In our research wt primarily wanted to establish the tractability of this approach so we have adopted the approach of
using the minimum specification artefacts to approximate the functionality required. Thus we have tried to keep the
number of attribute sorts and entity types to a minimum. Hence rather than allow downgrades, relative to the basic
classification labels, to occur in the general transitions indicated above we have specified a single downgrade
mechanism which enables us to keep the specification overhead to a minimum.

Before describing this, some further comments are in order on the interactions which occur between th, standard lattice
and the new conflict list/certificate roles mechanism. Consider the transition where information flows in accordance
with the standard classification label lattice but where the destinations conflict list is not a superset of the sources
conflict list. Specifically, consider that the destination has a singleton list consisting of the transition instigators
identity or role. Such a transition obviously allows a downgrade to occur without separation of duty by the simple
expedient of executing two steps - first move the data to somewhere where I can downgrade it on my own.

In reality therefore we do not have two security labels, where one set is only checked when a downgrade is attempted,
but instead have a single label with an extended definition of dominates and allowed lattice flow. Thus the conflict list
is really an extension of the standard latice. A label dominates another if the classification component of the first
dominates, in the classic sense, the classification of tht second and the conflict list of the first is a superset o, the
coni' ct list of the second.

Our security policy is then that of no flows down in this extended lattice with separation of duty enforced by the
conflict list subcomponent when this extended check fails.

So, we can now define two more of our attribute sorts used by the security policy in addition to the data and entity type
attributes - the security label attribute, which is a structured attribute consisting of the classic hierarchy plus
compartments sensitivity label and a conflict list of identities or roles, and the role/identity attributes, used to signify
the accountability of an entity to a human user.

Thus our typical entity is considered to possess the following structure

Role

Type security label -
classification, conflict list

Entity

Set of Data Attributes

Figure 9.

The next major change in our policy approach is that the security labels of entities are not required to be fixed, labels
can float in our machine. Thus returning to our modified example

9

Confidential George Mike Restricted

Da

State Transition

N
Fred

Confidential Gere Harriet Confidential

Data Data

Figure 10.

The extended notion of "no flows down" can be enforced by simply requiring that the labels of B reflects its contents
after the transition by simply floating the label to the least upper bound of A and B's security labels.

2.1.3. Inner Labels and Label Objects

Our notion of downgrade depends for its mechanisation on a further type of entity, a label object. The motivation for
the function of these objects, and another attribute sort associated with them, inner labels, requires that we consider the
formal basis of our policy model a little more closely.

Extant policies of information flow in a lattice are usually formulated in terms of systems with a fixed number of
entities with fixed labels. In our machine we allow the "creation and deletion" of entities and as indicated above do not
constrain !abels to be fixed for the lifetime of an entity. These two relaxations introduce two further flows of
information in addition to the overt flows of information due to reading and writing data in entities.

The first allows covert flows by means of modulating the availability of the "fact of existence" of an entity. In our
model, as in real systems and most extant models, entities do not in fact appear and disappear into and out of thin air.
Entities are usually allocated or activated from free lists, etc. In some extant models these are either not explicitly
modelled, -r, if they are modelled, are not covered by the policy statement of security. In our approach they are
explicitly modelled and therefore captured by our complete information theoretic definition of information flow. In our
model movement to and from a free list by a garbage collector or system service is reflected by the changes such a
specification indicates in the structural relationship of entities.

The second relaxation allows coven flow by modulating the "permission to access" due to relative lattice labels
imposed by the policy statement. Thus the classification of an entity, desigried to protect the information content of
the entity, itself has an information content requiring classification and protection.

The notion of an enforced, non-bypassable structural relationship amongst entities is imperative in order to be able to
address these two issues. For fact of existence this can easily be seen in the example of labelled files and directories.
To find the existence of a file I must be able to list its name in a directory or use an open command in the directory,

10

etc. If the classification of the directory is such that I cannot perform these operations then I cannot know of the
existence of the file. This property quickly generalises to the hierarchy of labelled objects which we know and love in
most extant models and implementations. Thus, newly created files are stored in directories whose Libel reflects the
sensitivity of the fact of existence of the file. This of course is dependent on the hierarchy commands upholding the
property that only suitably cleared entities can traverse the tree and enter such classified branches. In traditional file
systems using user supplied names, this protection extends not only to the file interrogation commands but also the
commands to create and name files. By probing with user supplied names the existence of files can be inferred by name
clashes.

This mechanism can also address the fact of classification. If the fact that a file is classified confidential is restricted
even though its existence is unclassified then it should not be stored in a directory below restricted.

With this approach a secret file stored in a restricted directory tells one that the fact of existence of the file is restricted,
OR, the fact of its classification at secret is restricted, OR, both.

Our information flow definition, in order to be complete, would regard an attempted read of a classified entity by an
uncleared entity, even though it is refused, as a flow of information from the classified entity to the uncleared entity.
In otherwords executing a security check introduces a security flaw. To counter this it must be the case that one must
dominate any entity against which one can execute a command. Those which one doesn't dominate must be such that
one cannot execute any commands against them. This property is provided by our structural relationship, all
commands reflect in their specification that the indication of entities is relative to the instigating entity. This, at first
nonsensical, notion that one only has access to that which one is allowed access is mechanised by a notion of label
objects.

Every alpha entity is viewed as really consisting of a pair of entities, a label object which points at the true alpha
object. The label object can contain, as data, an indication of the classification of the alpha object to which it points.
The label object's label indicates the sensitivity of the information it encodes in the normal way as for any other entity.
An entity which dominates the label object's label can therefore read its data, the alpha object's sensitivity, and
determine whether it would be granted access to the alpha object, a check which does not entail information flow from
the alpha objecL

Restricted

Label
Object C f Confidential

Alpha data
Object

Thus, this indirection allows the normal policy notions of entities dynamically gaining and losing access to objects,
with a security check on such access, without there being an insecure information flow.

In this scenario the label of the label object classifies the classification of the alpha object. Unfortunately, the fact of
existence of the label object, alpha object pair cannot be disambiguated from the fact of classification as the label object
must be .jtored in an alpha entity which dominates its own label.

The label on a label object is not required to dominate the label of the alpha object to which it points. The strict "you
must dominate what you point at" is only applicable to the active subjects of the policy model. The relationship
amongst passive objects of the policy can be anything which the commands require in order to uphold the policy.

The label of an alpha entity stored as data within a label object is the motivation for our third security related attribute
sort, inner labels. These simply reflect that security labels have a representation which is matched by some
representations of data and allow us to coerce between the two types.

11

2.1.4. Certificates and Inner Roles

Finally, label objects also allow us to model the separation of duty notion of downgrade with the minimum
specification overhead while at the same time retaining the intuitive functionality that users would require of such a
transition.

A certificate is inserted into the hierarchy such that it points at the label object of the alpha object which is to be
downgraded

Restricted

_ \ Sec

Confidential Secrel

NewOlAlh

Al pha File Fl

The certificate contains the data of the alpha object which it is agreed can be downgraded. This copy when the
certificate is created accounts for "freezing" the data during the multi-step downgrade procedure preventing "Time of
Check-Time of Use" (TOCTOU) attacks. It also contains, as inner labels, the new labels agreed for this data by the
owner of the certificate. When sufficient certificates, which agree on the data and labels, are accumulated a new alpha
object is created with those attributes and the label object is adjusted to point at this new alpha object.

Restricted

Conff

Confi Secrel

12

This reflects the typical "name sameness" which users expect of downgraded documents. Each time they go to the
registry and get document "X" they expect to get the latest document regardless of any downgrading that has occurred in
the interim. In the downgrade command the label obict is preserved in the directory thus all access to the file which
are indirected via this automatically pick up the downgraded documenL

The final attribute type of the policy model are the inner role attributes. These arise in the mechanisation of user
registration when certificates are used to indicate the role and labels of permitted user login. The certificates role
indicates the role of the user approving a registration. The role of the user which it is approving must be held as data
within the certificate. Thus, in the same way as inner labels, inner role simply represents a coercion of data.

2.1.5. Join Entitles

Finally, there is one last entity type to consider before our machine is complete. These are the "join" entities. These
are associated with gamma entities and reflect an abstraction of a property of certain machine architectures and
implementation strategies. The scenario being addressed is o-" where a user wishes to manipulate an untrusted data
structure with one or more pieces of untrusted software. Dep ,.,ng on the architecture and chosen implementation of
these entities there may or may not be the possibility of interaction directly between the untrusted entities. For
example, if the untrusted software is run as processes there may be system introdiuced semaphores on their access to the
shared data structure. Using these it may be possible for Trojan Horses to cc -'municate in ways not anticipar'd In
such cases, if one of the processes opens a classified ile and has its label floatk& to reflect this then to be safe the other
processes "joined to it" by the semaphore should also have their labels floated on the assumption that the first process
will signal the data to them. Thus, while in the model there is no direct access to account for their labels floating, we
wish to indicate that certain entities should be treated as a group with their security control treated in concert as a single
entity Th"k is th p,,p-se of the join entity and the join command. The join entity simply records the members of
the group by pointing at them. Every untrusted gamma entity is associated with a join entity. The join command
takes two join entities and ensures that each points at the union of its own and the other's entities and the other join
enti y.

2.1.6. Complex Sources

We summarised our security policy as that of no flows down in an extended lattice with separation of duty enforced by
the conflict list subcomponent of the lattice labels when this extended check fails.

In reality we allow a second condition under which the strict no flows down in t' lattice is relaxed. The justification
ior this also stems from the real world considerations which give rise to separatio., of duty as a notion of security.

In the real world when a human user creates a new file in a registry, a new project is started, etc, other humans are
aware of the existence of the new object. This "one bit signalling channel" via the existence of objects is unavoidable.
It is not considered a threat in the human environment because humans have much more convenient channels than
signalling through patterns of project creation, deletion, etc. We carry this notion forward into our machine
environment. Obviously software written by a user, command scripts and other automated schemes, may attempt to
use such channels, effectively because they are able to use the power of the machine against itself. However, a trojan
horse free, trusted path interface to a human user, which carries out one for one events on behalf of user actions on that
interface, can be assumed not to be utilising such channels. We refer to entities on the system carrying out certain
actions which technically violate no flows down, but which are allowed by virtue of such threat analysis arguments, as
"complex sources".

We like to think of this argument as simply a very weak form of separation of duty, the user will not use such a
channel not because of the conflicting motivation of some other user but simply because he lacks the motivation
himself, it is simply too arduous to try and signal information by creating and deleting files with all the consequent
mouse actions, dragging icons to wastebaskets, confirming dialog boxes, etc.

Given this initial whirlwind overview to provide the motivation for the machine structure and policy as a whole we can
now turn to examination of the individual aspects in slightly more detail, including an outline of the commands
available.

2.2. The Persistent, Passive, Storage Structure

Ignoring for the moment certificates and trusted path entities, the persistent, passive storage structure of the machine is
a hierarchy constructed from alpha and label objects.

13

Root
Label

Figure IlI.

All commands are such that they only work on objects to which the active entity has direct structural access. Given
access to a label object entity, the user and gamma active entities of the machine can traverse the tree below that object
using the following commands.

2.2.1. The Open and Examine Commands

The only command available on a label object is to "open" it. This checks the inner labels of the label object against
the invoking entities security labels. If dominated the open command gives the invoker direct structural access to the
alpha objet It is thus a property of the system that at all times the objects to which an active entity has direct access
are always dominated by the active entity. The active entities clearance is its label in the case of a user entity and the
label of the parent user in the case of a gamma entity. The open command in the case of a gamma entity also ensures
that the gamma entity's label, as well as all its joined entities', floats to reflect the opened alpha object.

As well as being able to read and write data from an opened alpha object the user and gamma entities can "examine" the
alpha objects related entities. Thus having opened root label, in the above example, examine would reveal the A and B
label objects and allow selective update of the user or gamma entity's relations so that it has direct access to these
labels. It can now repeat the open of this new label object to obtain access to A or B. With this alternating pattern of
exarninelopen/examine/open a user or gamma machine can traverse the tree, at least as far as the classification checks of
open allow.

2.2.2. The Read and Write Commands

For both user and gamma entities read allows the attributes of any alpha object directly accessible to them to be
obtained. For write a no write down check is executed. For a user entity the check is against the users clearance. For a
gamma entity the check is against the floating label (high water mark) of the gamma entity.

The severity of the former check, which is the one used in most extant models, is why we say that users typically
achieve their work by using untrusted software, gamma entities. In extant systems a user reading the unclassified
weather report and using the trusted path to send a memo about calling off the golf game to a colleague generates a
report classified at its clearance. in owr approach, as in reality, the user uses an untrusted editor process initiated with a

14

,=-- m .w mlE ,,,,,a mm.R--ot

low high water mark. If the editor works without Trojan horse intervention, it will generate an unclassified memo.
The user will certainly notice if the Trojan horse has grabbed any secrets and encoded them in the memo because the no
*,ize down check on the correctly maintained, trojan horse constraining, high water mark will prevent the user posting
the memo in the intended unclassified mailbox objecL

2.2.3. The Create and Delete Commands

User and gamma entities can create and delete label/alpha object pairs in the hierarchy subject to security constraints.
In information theoretic terms inserting or removing the pair is equivalent to "writing" the alpha object at which the
insertion/deletion occurs thus the security checks ought to be those of the corresponding write command for a user or
gamma entity. This is the case for the gamma entity but in the case of the user a relaxation is made. As stated we
believe a human user on a trusted path will not use signalling side effects, such as creation/deletion of entities in a
shared hierarchy. Thus while we apply the write down check for overt writing, we don't trust users not to carryout
wholesale copying, we do not carryout the write down check in the case of creation/deletion.

It might be argued that this is a weak form of separation of duty on at least two fronts. First, it is only allowed for a
human on a trusted path, not for software written by humans for which the tediousness of such signalling is not a
serious inhibition. Second, although it has not been explicitly mentioned as a security measure, we would ensure that
all TCB operations are audited. Thus the creation/deletion of objects would be audited and users may have to justify a
pastern of such activity recorded in a log to their superiors. This motivation is an example of separation of duty.

It must be admitted that without this relaxation the flexibility of the machine becomes somewhat restricted. We
believe this division of labour between trusted and untrusted software is a realistic approach to automating security
conscious applications. The actual manipulation of data by complex applications is carried out by untrusted software
, .,, V , ,u-,- wae m---s. - -- --'-,,',-,,; o nrh- e.nmcn t "H which such software and da,,i ored a sh s-

controlled by trusted software held accountable to human users. Thus we let the TCB and the machine constrain the
overt flows of information and let humans handle the signalling channels knowing that they are not eluipped to exploit
them.

In this regime the flexibility of the commands when used by a user as opposed to a gamma entity is the exact converse
of the normal read/write. The gamma entities tend to get restricted by the fact that alpha entities' labels cannot float to
the high water mark of the gamma entity and the no write down rule therefore restricts their scope for where they can
create/delete alpha entities. Users on the other hand are virtually free to create/delete where they like, subject only to
the fact that they might have to justify such audited activity at a later date.

In both cases entities are created widh no overt data content. Subsequent read and writing of data is subject to the
standard read write restrictions thus the labels chosen for the new entities govern who can read and write them. It is
thus quite permissible for a gamma entity of say secret high water mark to create an unclassified entity in a secret
directory. It will be prevented by its high water mark fr,m writing data to the new object. Any secret data encoded by
the fact of existence of the new object or by its selected classification is protected by the secret classification of the
directory in which the object has been created.

2.3. The Transient, Active, Process Structure

We will describe the process structure in terms of an established user process. The establishment of such a process
using separation of duty in registering and logging in are deferred for the moment.

A user entity has access to a trusted path port in order to interact with its human user, access to root in order to
indirectly interact with other users by storing work in the alpha hierarchy, and access to a home directory in which to
store work in preparatici for sharing or which is to be private regardless of classification.

To assist with this work the user can instigate gamma entities which are untrusted active entities. To retain security
control and yet give such entities the flexibility to achieve their tasks, gamma entities' labels can float from the level
given when they are initiated by the user up to the user's clearance. The user can interact with the gamma entity to
give parameters and receive results, and to mediate interaction with the human user on the trusted path device. The user
entity must mediate to ensure that the display clearly indicates to the human user which input and output is with the
trusted user entity and which with the untrusted gamma entities. This will involve a convention in the use of
windows, labelling, etc.

This view of the typical lifetime activity of a user entity provides a convenient order in which to review the commands
available. The commands to manipulate the storage hierarchy have already been covered above.

2.3.1. The Read and Write Path Commands

These are quite straightforward with no explicit security checks involved. The implicit security features are that a
trusted path entity can be accessed by only one user entity which must leave the device in a purged state at the end of a
session, ie the logout of the user. In reatity the interaction between the display and input device and the command line

15

L -_ _ _ _ _ _ _ _ _ _

interpreter are quite complex, see for example the MaCHO Specificationl. The maintenance of windows and their
labels in a manner which allows users to clearly forsee the consequence of their actions and which prevent untrusted
software spoofing users is clearly a design issue which is security relevant, however, this is really a question of
designing an appropriate man machine interface and ensuring that it is correctly implemented rather than policy specific
software.

For the purposes of the policy, and the security policy checks which must be embodied, the abstraction of this to the
simple information theoretic read and write transitions is sufficient for completeness of our abstract machine.

2.3.2. The Create and Deizte Gamma Commands

The only constraint on a gamma entity's initial labels are that they are dominated by the user's labels. As in the
creation of alpha entities and label objects, in reality gamma entities are always created one for one with an associated
join entity.

2.3.3. The Read and Write Gamma Commands

These commands are sufficient abstractions of both the initial priming of a gamma entity with parameters from the
user creation call and to receive results before the gamma deletion command as well as covering any intermediate
mediation by the user entity in the gamma entity's interaction with the human user on the trusted path.

2.3.4. The Join Command

The join command does not effect the structure or behaviour of the machine in application functionality terms. Instead
it acts to modify the coverage of the security mechanisms. Thus, joined gamma entities continue to exercise their
normal interactions with the alpha hierarchy and do not obtain any extra functionality in terms of enabled interaction
with the joined gamma entities, etc instead all security relevant operations to float the labels of a 'amma er.t.v (Ppd
its join entity) now act to float the labels of all entities in the joined group of gamma entities. Thus the interaction
between gamma machines is an assumed linkage not explicitly modelled.

2.4. User Reglstratlon/Dereglstratlon

Because of the policies dependence on separation of duty user registration in this machine is unusual in the sense that it
avoids as far as is possible dependence on the notion of a single "super user" style approach to the registration of users,
their initially allocated clearances and roles, etc.

While not explicitly modelled, the approach used is dependent on authentication and identification processes which
permit of mutually suspicious authentication, non-repudiation, etc. These are properties usually associated with,
though not exclusive to, public key cryptography approaches. The significance of authentication and identification to
separation of duty based approaches has been widely discussed, in for example the WIPCIS programme.

The approach simply recognises that if a human users are to be held accountable for the actions of their computer
proxies then they must have the opportunity to veto or amend not only the parameters of their registration on the
machine but fundamentally whether they consent to be involved with it in the first place. This is simply achieved by
making the registration process dependent on the human user requesting registration as the first step.

2.4.1. The Registration Request Commands

The human users granted physical access to a port of the system can request registration by effectively signing an
application form which gives their undeniable identity and describes the clearance, in terms of sensitivity and role
responsibility, for which the user wishes to accept responsibility. Thus the user says "I am willing to be entrusted
with up to secret information and wish my questionable actions (downgrades for example) to be supervised by my boss
and Fred".

Existing users of the machine, who are relevant to the request in terms of accepting responsibility for the user's
requested clearance, in the example the boss and Fred. can then choose whether or not to approve the user working
under the requested constraints. They are not able to modify those conditions. Thus the user cannot find himself
unexpectedly entasted with top secrets, which he didn't want because for example the penalties for eiaorb are
unacceptable to him, nor barred from material which he wished to access and which was the only motivation for
registering as a user of the machine.

I "A Z Specification of the MaCHO Interface Editor", A.Wood, RSRE Memorandum 4247.

16

These steps are mechanised by the direct analogy of the real world model of signed certificates and forms.

2.4.2. The Certificate Commands

The registration command creates a home directory for the new user with the parameters and identity provided. A home
directory is merely a passive storage area for the user and does not imply any ability for activity on the system. This
home directory is the subject of a certificate which records the putative users positive endorsement of the parameters.
Other users can only approve certificates by first inspecting them. (one can't approve things blind) and then "signing" a
copy of the certificate indicating their concurrence.

For housekeeping purposes users can also delete certificates they have created. If the user deletes the certificate created
by a registration request he effectively deregisters from the system and disables future logins.

2.5. User Activation/Deactivation

The ho., ,,. directory with its collection of associated certificates is the basis of the mechanisation of the login process.

A human user with physical access to a port can also attempt a login. As with the registraion command the human
4w provides an undeniable identity and a putative clearance. If a home directory -,Ith ,hoc properties can 1r; fournd,
and if the necessary certificates approving that directory are present a user proxy process is created on the port with
access to that home directory. Logout simply removes this proxy.

2.6. Downgrade

The mechanisation of the multiple step, separation of duty, downgrade command is similar to the user
registrationogin process. Users can request the downgrade of an alpha object. This creates a certificate with a copy of

Sz .c ,-,,,,, ,; the new labels which are requested. The cernilicates labels reflect the current alpha object
classification as we cannot assume the downgrade will be approved. The identity of the certificate "signs" the
requestors concurrence with the labelling of the data with the new labels. Other users responsible for the data, by virtue
of the conflict list label of the alpha object, can inspect the certificats associated with the alpha object and, if they
concur, create a copy of the certificate with their "signature".

When sufficient certificates which agree on the data and the labels to be accorded it are amassed a downgrade command
against the alpha object will succeed. This involves creation of a new alpha object with the data and labels indicated by
the certificate with modification of the old alpha objects label object to now point at the new alpha. Thus the path ef
open/examine commands by which an entity accesses the downgraded object is not disturbed.

3. The Z Specification of the Abstract Machine

The Z specification of the abstract machine indicated by the above overview is given in the appendix of this document-
The specification is in RSRE's ZADOK dialect and was edited and type checked by those tools2 .

In this section we make only general comments on the form and structure of that specification.

The specification is in the typical Z idiom for a Finite State Machine specification.

Thus a state is defined as a schema giving the functions which provide the attributes and entity relationships of entities.
A value for these functions is given for an initial state.

The commands of the state machine are defined in the Z operations idiom, that is, in terms of the effects of the
operation on the state. The initial state and the state transition command implied by these operation specifications thus
inductively defines the abstract machine.

The one aspect of the specification's structure and form which is not apparent from the section 2 overview is the
question of modelling creation and deletion of entities.

2 Hence, this document's source is held in Microsoft Word 4.0 format on Apple Macs while the appendix is held
in RSRE's proprietary Flex format of the ZADOK tools on ICL Perqs. (All trademark and copyrights acknowledged)

17

In a typical Z specification this would be simply handled with an approach which identifies a "new" entity as simply
one which was not currentl - volved in the state functions. In this specification a somewhat more explicit
formulation has been presented and some explanation is required for this.

The formulation is present not from a desire to convey any particular implementation strategy. Indeed in striving for
abstraction in order to avoid this the functionality is somewhat obscured. The motivation for the approach presented
stems instead from a desire to emphasise a point which arises from the security policy modelling approach.

Creation and deletion of objects, even if implemented as allocation and deallocation of a finite population from free
lists, etc, creates an unavoidable signalling channel through the modulation of resource exhaustion. The formal
definition of information flow adopted in our approach is a complete definition in information theoretic terms.
Therefore even when the exact mechanisms of allocation and deallocation are omitted from an abstract specification our
policy approach captures this potential information flow which is fundamentally unavoidable 3 .

If the normal Z idiom were to be used for modelling the system, when viewed from this formal flow point of view, any
transition involving allocation of entities would constitute a flow of information from every entity in the system. In
practice in the implementation the theoretical flow, while it cannot be eliminated, can be rendered impractical to use.
Typically the allocation is by some kernel system service thus the flow from every entity in the system is to this
kernel service. On subsequently allocating an object to a user of the service this information flow is not necessarily
propagated directly. Consider an object released on to a free List by an eatity X. Allocation from the free list might be
from the head of the list and not the actual object released by X. Thus direct, usable, signalling from X to the caller of
the allocation qervice i5 obscured by inr-,,-,ina:: length of the free List. Emptying a free list to remove this noise, ie
to act on the rcsource exhaustion condition, can be prevented by least privilege quota's, etc.

The model therefore includes an entity which fulfils this signalling suppression role. It is presented in the specification
as a "garbage coI!'-or". The specification is not of any practical collection algorithm thus this misnomer can be read
simply as that part of the system intimately related to the allocation/deallocation transitions.

In the formal model this garbage collector entity can be presented as a "complex source". By definition in the model
such entities are assumed to uphold the no flows down condition by means ex machina.

Thus the purpose of the garbage collector in the specification is not to provide a solution to this problem but to draw
attention to this problem area and avoid conveying the impression that the problems of allocation/dealocation
somehow "fall out in the wash" with our approach.

3 In a system where the formal structured system of interacting entities shares the finite resource of the machine
dynamically. If the machine resources are pre-allocated into isolated divisions with no sharing of unused resources
between such regimes then the situation does not arise. In effect the physical machine is not shared but partitioned into
separate physical machines sharing only the power supply!

18

Appendix A

This appendix contains the Z specification of the Abstract Machine. The presentation of the machine is as
follows.

First, the basic types for representing entities and attributes are defined. Supporting definitions, such as the
lattice formed by security labels, etc, are also given.

Using these types the state of the abstract machine is then defined. An initial value for this state is then
defined.

The commands or operations of the state machine are then described. These are introduced in a different
order from the overview in the document and are more in line with describing how a fully functional
machine is boot-strapped up from the initial state.

Thus the login/lo$out available to the system owner in the initial state are described. The ability of further
individuals to register as users and the approval of such users is then described. This involves the traversal of
the alpha hierarchy with open and examine commands as well as the basic certificate handling commands.

With the ability to create a population of users now shown, the basic c2pha hierarchy -n-iulation commands
available to them are now described followed by the commands available to them to create and delete
gamma entities.

This leads to the description of the variations of the user commands available to the ganima entities followed
by the internrtions between active user and gamma entities.

The interaction between. use e:,ties and the truste.J path are then described which provides the only
input/output ability of the machine.

Finally, the downgrade commands are described.

t

F p. - I . .. -

The Basic Types

We parachute in the four following types (sets). E is the finite set of entities which comprise the system.
Classification is the finite set of values which are used to construct the normal securiLy levels lattice. Identity
is the finite set of values used as names of people/roles and used to create the other notion of security levels
used in SMITE, conflict lists. Datum is the finite set of values representing information encoded as data.

[E, CLASSIFICATION, IDENTITY, DATUM]

Entities are typed by a state dependent function into one of the explict types defined by entity-type.

ENTITYTYPE ::= Label Object I Join I Alpha I TrustedPath I User I Gamma I Certificate

Trusted Path entities are the 10 devices of the system. Users are the trusted command line interpreter
entities which act as proxies for the human users notionally attached to the 10 devices. Alpha entities form
the hierachical storage of the system which User entities can read and write, create and delete, etc, in
response to commands read from the Trusted Paths. Gamma entities are the untrusted processes spawned by
User entities and given subsets of the Users access to the Alpha structure.

In practice the Alpha structure includes Label Objects. There is a one for one correspondence between
Alpha objects and label objects. The labei object simply holds, as data, the classification and conflict list
labels of the corresponding alpha object. The label objects provide two main functions. One, they allow the
classification of an entity to be different from the classification of its classification, which is sometimes
required. Two, they allow our analysis technique -o work in the sense that they allow denial of access duc to
security checks to be analysed without assuming that there is a flow from that entity. In addition theN alo
allow a nice mechanisation of downgrade.

Join i ,- are associatoed with gamma machines and represent the hindino together of entities which share a
common high water mark.

Finally, certificates arc a variety of Alpha object used to mechanise the separation of duty transitions for
registering users and downgrading alpha objects.

The following datatype re-definitions of thc sets already introduced are simply a nice Z idiom for idcntifying
some named distinguished members for use throughout the remainder of the specification.

CLASSIFICATION ..-= Top i Bottom I classes (I CLASSIFICATION >>
IDENTITY .'= SvsOwncr 1ids ((IDE2,7IT)'))

E :.= R7 I HIL I GC I GCL I entities ((L))

Top and Bottom are the requirements for a finite lattice.

SysOwner is the identity of the system owner required in the initial :2te to allow the system to boot up.

RT is :he root of the alpha structure, RTL is the label object for RT. GC is the garbage collector modelled
as a user entity present from the initial state. GCL is a label object for the GC. The importance of the
garbage collector will become apparent as we progress!

The following keeps the above types and members for use in the remainder of the spec.

basic types keeps E, CLASS!'cICATION, IDENTITY, DATUM, ENTITY TYPE, Label Object,
Join, Alpha, Trusted_Path, User, Gamma, Certificate, Top, Bottom,
SysOwner, RT, RTL, GC, GCL

basic-types :Module

Security Labels

This section describes the notion of security labels to be used throughout the rest of the specification. The
policy model effectively uses two lattices.

First is the normal secret, confidential, etc, (including compartments) which is not modelled explicid hereinas it is all too well known. The second is the notion of 'ists (modelled herein as sets) of identues of
individuals responsible for the information in an entity. These conflict lists are used to enforce the separation
of duties controls when we step outside the bounds of the first lattice.

Because the vast majority of transitions, while not explicitly involving separation of duties, nonetheless.
require propagation of a "no flows down" property in both lattices, it is convenient to handle both labels as a
single security labels schema.

SECURI7TY LABELS
class: CLASSIFICATION
conflict : P IDENTTY

In these values we now define a top, bottom, dominates, lub, glb etc in the normal way to form our policy
model lattice. The top security label (T) has the Top class and all possible identities as its conflict list. The
bottom label (L) has the Bottom clazc and ihe empty conflict list.

I SECURITy LABELS

(T).rla. = Ton
t T).conflict = IDE.1TY

(i).class = Bot'om
().conflct = 0

Dominates is defined as a partial order to form a lattice in the normal %kav. We indi.atc that dmninatcs in
conflict list terms is simply the superset notion (subset in schema since the tyv.sc checker hbrr\ de' nl
define mrwrcrint 'i

dominates_ SECURm'_'ABELS -* SECURITY LABELS

V x SECURITY LkBELS - T dominates x

x dominates I
V X,), z . SECURITTLABELS * x dominates x

(x dominates y A y dominates x) 4, x =

(x dominates y A y dominates z) 4 x dominates z

V x, y : SECURITYLABELS * x domiates y =* y.confict c x.conflict

Lub and glb are defined in the normal manner.

lub_ : F SECURITYLABELS -" SECURITY_-LAILLS

V set : F SECURTYLABELS . V x : set*
lub set domnates x

V I: SECURITY LABELS
I (V x : set , I diminates x)
.I dominates lub set

glb_ F SECURITLABELS - 4 SECURITYLABELS

V set : FSECURJTYLAELS V x: set
x dominates gib set

V I: SECURFlYLA.BELS
(V x :set * x dominates 1)t_______________________________________set___dominates________I

labels keeps SECURIT LABELS, T, i, dominates, lub_, gib_

p 4

basic-types :Module7j labels :Module

The Definition of the FSM State

The state of the system is defined in terms of five total functions and two relations.

STATE[:E+-E
outerlabels : E -+ SECURITYLABELS
entirytype : E -+ ENT7TY-TYPE
role E -+ IDENTITY

data E + DATUM
inner labels : E -i SECURITY LABELS
inner role : E -4 IDENTITY

The first four are considered notional "controls" on an entity which contains arbitrary data. Because of the
requirement for entities to create and modify controls on other entities there is a need to coerce data to
controls and vice versa. Rather than model this, necessitating rather more structure in data, we use a
specification artefact of two other functions whose data nature is intimated by the prefix inner. This mimics
the approach we take when using m-Eves to analyse the model. In practice, the proofs of the policies notion
of information flow do not distinguish between controls and data, they are simply concerned with the
structure and values of the state. This artefact does not weaken the proof of security and yet keeps the
specifications relatively simple.

G gives the structure of the system. An entity scheduled as the instigator of a transition can nominate other
entities as being involved only if they are in the range of its domain of the g relation. All of the state
transiton specifications enforce this.

Ovter labels gives the security label of an entity which always dominates the information encoded by that
entities domain of the state.

Entitytype is the function which types entities. It is the command specifications' use of this in conjunction with g
which gives a machine "structure" and which enables -*curity to be achieved in the face of high functionality
by using data hiding, encapsulation, etc; all of the . lities which one expects from a notion of data typing
and as implied by the name SMITE.

Role gives the identity of the person ultimately responsible for the entity. It conveys security significance in
terms of segregation of duties only for User and Certificate entities. For all other entities it may be of use in
application terms, thus for a gamma entity one knows who caused it to be spawned, for an Alpha entity, who
created it, etc.

Data, other than that it changes during reads and writes, etc, has no security significance placed upon it.
Inner labels and inner role are only indirectly security significant for label objects, joins, and certificates. In
all entities they represent simply a coerced form of data.

State Transitions

State transitions are defined thus:

A STATE
STATE

STATE'
instigator : E

entitytype(instigator) E { bser, Gamma, Trusted-Path I
{GC} c dom (g 0 {instigator})

This is intended to capture that a single entity is scheduled to initiate a state transition. All transition
specifications observe the convention that the state values used are derived from the instigator or transitively
from entities in its g. The distinguished entities RT, GC, and their labels are assumed available to all
transitions, thus giving the TCB access to most of the system through g if required. Only a few of the
operations make use of this feature. The scheduler is not modelled but is assumed to only schedule the sorts
of entity we expect to be acti'e and only then if they are not deallocated and on the garbage collectors free
list awaiting sanitisation and reallocation.

5

The Basic "Untrusted" Transition

The following transition allows only the instigators data to be modified and covers most untrusted processing.
This schema is used with renaming of RESULT as the base case of all transitions which may give an error
response.

4ISTATE i
ASTATE
RESULT: DATUM

g' = g
outer labels' = outer labels
entitytype' = entitytype

role' = role

{ instigator 14 data' = { instigator } 4 data
data' r data Q { instigator 4 RESULT I
inner labels' = inner-labels
inner role' = inner-role

Here we see the basic form which all the state transtion specifications will take where the changes in each
state function and relation are given in equational form for the before and after state.

basicstate keeps STATE, ASTATE, OSTATE

6

basicjype :Module l abels :Module baic state :Module

The Initial State of the FSM

The initial state of a viable system requires eight entities plus at least one labelled, trusted path, 10 device.

Four of the eight entities are the root (RT), the garbage collector (GC), and their associated label objects
(RTL, GCL).

The purpose of the other four will become clear when the methods of registering users and logging in are
explained. They are the system owners home directory in the alpha structure (oh), a certificate authorising
the use of that directory (oc), and their associated label objects (ohl, ocl).

This initial set of entities is described below.

Init Entities
oh, ohl : E
oc, ocl : E
ports, ports labels : P E

#ports = #ports labels
#ports > 1
#({RT, RTL, GC, GCL, oh, oh!, oc, ocl} u ports labels u ports) = 2 * #ports + 8

The initial structure of these entities is given below. Each label object points at its associated labelled object.
Thus, ignoring this detail, the structure is essentially that root points at the ports, the garbage collector and
the owners certificate. The owners certificate points at the owners home directory which in turn points at
root.

The circle formed from root to a users home directory and back is what stops the garbage collector erasing
the system. Thus last one out turns off the lights.

The garbage collector points at every one, and always will do, otherwise he can't be a garbage collector. The ports
poi:, at no-one and never will. There are no other connections defined by the initial g.

In _Structure
STATE
InitEntities

rng({RTL} 4g) = {RT}
rng({RT} 4 g) = {GCL, ocl } u ports-labels
rng({GCL} 4g)= {GC}

rng({GC} 4 g) = E
rng({ocl} 4g) = {oc}
rng({oc) 4g) = {ohl}
rng({ohl} 4g) {oh)
rng({oh} 4g) = {RTL}

g P ports = portslabels 4 g
#(g 0 ports) = #ports
g(ports| = 0
({RTI4g. (RTL}4. (GCL}4g, {GC}4g. {oh}4g, {ohl}4g. {oc}4g, {ocl} 4g, ports-labels4g
) partition g

The types of the initial entities is much as one would expect from the names and roles of the entities
described above. Root and the owners home directory are Alpha objects, the garbage collector is a User
process, the owners certificate is a Certificate, the port is a trusted path, the label objects are label objects,
etc. The entitytype of all the other entities, in the g of the garbage collector, are unspecified. Before they
can play any part in the system they must be allocated from the garbage collector's "free list" at which point they
will be sanitised and assigned their appropriate type, etc.

7

nit _Entity Types
Init Structure

entitytype(RT) = Alpha
entitytype(RTL) = Label Object
entytype(GCL) = Label Object
entitytype(GC) = User
entirytype(ohl) = Label Object

entirytype(ocl) = Label Object
entitytype(oc) = Certificate
entiytype(oh) = Alpha
V e : ports . entirytype(e) = Trusted-Path
V e : ports labels ° entitytype(e) = LabelObject

The only significant role assignments in the initial state is that of the owner's home and owner's certificate which
must be equal and that of the system owner. As the roles of all other entities are not significant for simplicity
below we show all entities as being assigned SysOwner role in the initial state.

nit Roles - _I

mit_Structure

V e : E • role(e) = SysOwner

For outer labels the initial state mandates that all entities are labelled bottom, except for the garbage
collector and the owners home directory. The garbage collector must be cleared to top as it observes all
entities during its activity. The system owner is given the clearance Bottom and a conflict list of himself.[nit Outer Labels

InitStructure

V e. E I e ; GC A e * oh * outerlabels(e) =1
(outer labels(oh)).conflict = {SysOwner}
(outerlabels(oh)).class = Bottom
outerlabels(GC) = T

Similarly for inner labels the initial state mandates that all entities are labelled bottom, except for the
garbage collector's and the owner's home directory labels which reflect the outer labels of their associated
object and the owners certificate which gives the approved clearance of the owner, ie the outer labels of the
owners home.

SInit Inner Labels
tnit-Structure

V e : E I e * GCL A e * ohl A e * oc - inner labels(e)= I
inner labels(oc) = outer labels(oh)
inner labels(GCL) = outer labels(GC)

innerlabels(ohl) = outer labels(oh)

In the initial state the only significant inner role is that of the owners certificate which signifies the
permitted role of the owner, ie the outer role of the home directory.

Mit Inner Role
lnit-Structure

inner role(oc) = role(oh)

Thus, the initial state is defined by the conjunction of the above schemas.

8

[STA TE
InitEntities
mu tStructure
Jruu EntiyTypes
InitRoles
InitOuterLabels

IIntInnerLabels
mnitInnerRole

initial-state keeps lnitState

9

Overview of the Commands of the FSM

At this point the most logical way of introducing the functionality of the abstract machine is as follows. First,
to show how the system owner can log in and logout, then show how a new user registers, then how the
system owner can login, move through the alpha hierarchy, review the request, and approve it.

Once we can see how a population of users with conflict of interests can be established in this way we can
then look at the users basic manipulations of the alpha hierarchy, create, delete, read, write, traverse, etc.
We can then examine the task of spawning and deleting untrusted software shells working on behalf of the
user and examine their basic functionality with respect to manipulation of the alpha hierarchy. Here we will
see the slight restriction in their functionality and the use of high water marks to track their activity.

We then look at how the user shells interact with the gamma machines and the trusted path.

Finally, we can examine the use of certificates and label objects in the alpha hierarchy to enable users to
downgrade alpha objects.

The "Garbage Collector" Model

Before doing this however we must briefly digress into a discussion of the manner in which some of these
operations are modelled, specifically the role of the garbage collector.

The operations fall into two distinct groups, those that involve allocation of entities and those that don't By
allocation we mean the sanitisation of an entity solely in the g of the garbage collector with the values it
requires and linking it into some other part of g. All such operation are modelled as two distinct transitions,
the first involving the obvious instigator of the transition where various checks are made and a second with
the garbage collector as the insigator w.,ch simply allocates the necessary entides and ui, 1 da'scs t
values from its own state variables, set in the first transition. It is probably not immediately clear why we
model the operations in this cumbersome manner, while at the same time trying to avoid detailed
specification of the data strutures of the garbage collector.

The answer is that we wish to show the limitations of our proof analysis technique which requires such
careful attention to detail. The operation of allocating an entity will always show a flow of information from
every entity in the system to the entity doing the allocation. This is basically the resource exhaustion covert
channel. If we modelled allocation operations as a single transition every instigator would receive
information from all classifications and would need to be designated a complex source, which by definition
does not propagate or utilise such signaled information. In the formal model and proofs, to obtain the
flexibility of the abstract machine without such drastic measures, we indeed have to model these detailed two
phase operations. In this Z DTLS style description of the abstract machine, we primarily wish to express the
functionality of the machine and do not wish to obscure this with unnecessary detail from the formal proofs.
However, we do not wish to mislead readers with a sense that allocation of entities some how "falls out in
the wash" with our approach. The style of modelling is therefore a compromise between showing the
functionality as straightforwardly as possible and drawing attention to the security obligations.

We begin our tour of the Abstract Machines functionality with the system owner logging in. This requires the
allocation of a User "command line interpreter" shell, and thus we meet head on the need for the two phase
transitions involving the garbage collector. With the above background this is hopefully not now confusing.

The Schema Structure of the Command Specifications

Before discussing login a brief note on the general form of presentation used for the operations throughout
this document. Each operation is defined with four Z phrases.

Starting at the end of the description, each operation is defined as a bad case, where only an error indication
is returned to the instigator, overridden by the good case. The bad case is defined as the @STATE schema with
RESULT renamed to some command specific value, "LOGIN NOTOK" for example.

The good case usually consists of three schemas. The first, 8<op-name>, introduces the personae dramatis in its
signature. The predicate defines in terms of these, all the parts of the state which don't change during the transition.
This predicate can therefore usually be safely skipped on first reading and is mainly useful for confirming
various questions during more rigorous examination of the behaviour of a transition.

The second schema, <op-name>-REQUEST, includes the 8 schema in its signature. The predicate expresses the
constraints on the personae dramatis which one expects of a reasonable request simply in order to conform
with the structure of the machine. Thus, if the signature includes a gamma entity and a join entity one
expects the gamma object to have entity type Gamma, the join to have type Join and the gamma object to be
in the g of the join entity, etc. These are important constraints and give the operation meaning in the context
of the machines structure but they are not the obviously important overt security checks.

The third schema, GOOD-<op "wne>, includes <op-name>-REQUEST and its predicate includes the
important checks and the main effects of the transition. This schema is thus the main essence of the
transition. On first reading of a transition one is therefore mainly interested in the signature of 8 <op-name> and the
predicate of GOOD_<op-name>. These alone are sufficient for gaining the essence of the command.

10

basic-types :Module basic-state :M le

The Initiate Login Command

A login is instigated by a irusted path, port entity which is currently not logged in. This status is distinguished
by whether or not a user entity is currently pointing at the port in g. Login provides the identity of the person
logging in and the session clearance which they are claiming.

All that happens in this transition is that the requested values are lodged with the garbage collector together
with sufficient data changes to allow the garbage collector to subsequently use the correct port, etc. The
instigator is told that the request has been initiated.

OINITIATE LOGIN
ASTATE
name : IDENTITY
sessionlabels: SECURITYLABE.S
portLlabel : E

g =g
outer labels' = outer labels
entitytype' = entitytype
role' = role
[instigator, GC 14 data' = (instigator, GC} 4 data
INI! I .,G

INITIATE LOGIN REQUEST[4NITIATE LOGIN
dom(g 0 {instigator}) = (portlabelGC }
entityrype(instigator) = Trusted Path
entfiytype(portlabel) = Label Object

GOOD INITIATE LOGIN
INITIATE LOGIN-REQUEST
INITIATE LOGINOK : DATUM

data'{ insti gator} I c datal{ instigator} I ({INITIATELOGIN_OK)
inner labels' = innerlabels ({ GC '* sessionlabels }
inner-role' = innerrole @ { GC + name)

A bad login can occur if for example a user attempts to login while already logged in.

BADINITIATELOGIN a STATE[INfTIATE I.GIN NOT OK/RESULT]

Overall initiate login is defined thus

INITIATELOGIN a BADINITIATELOGIN E GOODINITIATELOGIN

initate login keeps INITIATELOGIN

11

basicypes :Module labels:Module _basic-state :Module

The GC Execution of Login

This is the transition which actually creates a trusted command line interpreter User process. This will be
able to access in its g the trusted path port and the home directory. From its home directory it can access root
and hence, subject to security restrictions, the rest of the system.

The name and session level for the logged in User are obtained from the inner labels of the garbage collector
where they have been lodged by the initiate login command. The manner in which the garbage collector
obtains the port, port label, home directory, the right subset of user authorisations etc, are all underspecified.

0LOGIN
ASTATE
name : IDENTITY
session labels: SECURITYLABELS
home : E
UserApprovals P E
user-shell : E
port, port-label E

{ser shell} 4 g' = {user-shell} I g
outer-labels' = outerlabels E { user shell 4 sessionlabels)
entitytype' = entitytype E { user-shell 4 User)
ro" = role E {usershe! name)
S{user-shell, instigator, port) 4 data' =user-shell, instigator, port) 4 data
innerlabels' = innerlabels ED {user.shell + sessionlabels)
inner role' = inner-role 9 {user-shell 4 name}

LOGIN REQUEST
OLOGIN

dom(g 0 { user-shell)) = {GC}
instigator = GC
dom(g 0 {port}) = [port label.GC}
entitytype(port) = TrustedPath
entitytype(portlabel) = Label_Object
entitytype(home) = Alpha

User approvals are certificate objects lodged in root (indirectly via their label objects). User approvals point
to a home directory which they are approving. The role of the certificate indicates the user so approving.
The inner roie and labels of the certificate aidicate the role and clearance which that user approves of. The
role and outer labels of the home directory indicate the role and clearance that the person who originally
registered on the system wished to use. Login therefore requires that for every name in the conflict list of the
clearance the user requested, a concurring approval from a user of that name exists.

Login allows logins below a users clearance. The User shell is then plumbed in and the port data updated
with a login banner, etc. Note that a user shell points to itself when logged in. This is the indication to the
garbage collector that the shell is active. The machine is such that nothing else (except the garbage collector)
ever points at a user shell.

12

L,-,,nm rnm ln l l lnnmmn l l l ll u m m

GOOD-LOGIN _______________

LOGIN REQUEST
WOGIN-OK: DATUM

ine-oeintgtr = name
inner -labels(mnstigator) = session-labels
UserApprovals Q gi gj{RT)) I n~ dom(entiryrype [Certificate))
(home I8= g gUserApprovals) I
inner -labeL4UserApprovals) = { outer labels(home) I
iner-role[UserApprovolsl = {role(Izome)I
(outer labels(home)).conflict F- role[UserApprovals]
outerjlabels(home) dominates session-labels
name - role(ho me)
g'1{user -shell)) = {RTL, port, user-shell, GCj u g[UserApprovals)
data'1instigator) I r- data[ffinsfigator} I u (LOGIN OK}
datal1{jorilI Q data((tporti u {LOGIN-OKI
data'({user-shell)hj 0

BADLOGIN Lh 0STATEILOGNNOTOK/ESL7

LOGIN a BADLOGIN e GOODLOGIN

login keeps LOGIN

13

L~- a

basic-types :Module basic_state :Module

The Logout Command

As one might expect therefore the reflexive link indication to the Garbage Collector discussed in the
description of login leads to a particularly simple specification of logout. This simply removes the reflexive
link in g at which point the shell becomes inactive and will eventually be removed by the garbage collector.
However, this means that between logout and the garbage collector erasing the g of the user shell the port
will be unavailable for further logins/registrations.

Logout also clears the data of the port object!

LOGOUT _

ATATE

entitytype(instigator) = User
g' = g \ {instigator 1* instigator}
outer labels' = outer-labels
entitytype' = entitytype
role' = role
data' = (g({ instigator} I n dom(entitytype {TrustedPath})) 4 data
inner-labels' = inner-labels
inner€ role'- te------

logout keeps LOGOUT

14

basictyes :Module basic-state :Module

The Garbage Collector Command

To clarify the point that the inner shell is not immediately available after logoutwe can look at the
specification of the garbage collector. This essentially does nothing but go through g removing ertities which
are not pointed to by anyone other than the garbage collector. Each pass therefore potentially generates more
garbage and it is assumed that the garbage collection transition is invoked sufficiently frequently to keep
garbage fully collected and available for allocation.

OGARBAGECOLLECT _

ASTATE

outer-labels' = outer-labels
entrytype' = entitytype
role' = role

{GC} 4 data' = {GC} 4 data
innerlabels' = inner-labels

inner role' = inner-role

GARBAGE COLLECTREQUEST ,1
r OGARBAGECOLLECT

instigator = GC

GARBAGE COLLECT _F GARBAGECOLLECT REQUEST

g' = garbage 4 g
where

garbage == doam ({GC) 4 g) \ rng({GCI 4 g)

garbage collector keeps GARBAGE-COLLECT

|1

User Registration

So. we have seen how the system owner can login and logout using the initial structurt of certificates and
home directories. It may not seem immediately clicar why such an elaborate mechanism is required and ho%
new users are registered to create further such structures.

The SMITE policy is based on the notions of segregation of duties which further requires notions such as
non-repudiation, assured auditing, etc, if normal social and judicial pressures are to be effective in providing
motivation, deterrence, etc. Thus, in such a regime if the audit trail says I did it then a court of law will
convict me. Hence, under such a system, the normal methods of user administration, where a super user
creates a pseudo person loosely connected to the real person by a password login system, are no longer
adequate.

This specification is assuming that IDENTITY values are non-repudiateable, non-forgeable tokens, such as
in public key signature mechanisms, and is concerned in showing how the putative user and system
administrator must co-operate in an intialily mutually suspicious manner to create a pseudo user on the
system. The specification deals only with initial mutual suspicion, at some point if you wish to use my system
you have to sign and agee and trust some aspects of the way it operates. At'least with this machine you
cannot be put on it in the first place against your will.

The model to be captured is therefore that a person can, on walking up to one of the systems 1O devices,
offer a signed token of his identity and request use of the system under some role, (in this specification his
identity but in general they need not be the same), at some clearance, under the responsibility of some group
of users, which may or may not include himself but must always consist of at least two users. The system is
not obliged to accept these grounds for use but it cannot change the terms without the cooperation of the user,
thus it cannot grant access at a lower clearance or with a different set of responsible users. Similarly, the
responsible users have to agree to be responsible for you in the same way that you would not want the system
to suddenly make you responsible for something without your agreement-

This is achieved by user registration creating a home directory' whose labels record the role and clearance
and conflict list which the person requested. Pointing to this is a certificate, concurring with the labels of the
home directory and owned by the person. Unlike the initial set up for the system owner this is insufficient for
the person to log in because of the requirement that his conflict has at least two members. An existing user of
the system must approve the request before he can log in. Initially, the first users on the system must
nominate the system owner. It is envisaged therefore that the system owner, using physical access controls to
the 10 devices, initially enrolls a number of his responsible employees using mutual conflicts. These
managers can subsequently manage the system and indeed the system owner could delete himself from the
system. Using these simple mechanisms any separation of duties scheme can be built from the initial state.

'1

basic ryps odlelabels :Module l basic state :Mo dule

The Initiate Registration Command

As with login this transition simply lodges with the garbage collector the parameters)I the users request, a
name and a clearance.

VINITIATE USER-REGISTRATION
A STA TE

name : IDENTITY
clearance SECURITY LABELS
port label E

g =g
outer labels' = outer labels

entitytype' = entitytype
role' = role
{istigator, GC} 4 data' {instigator, GC} 4 data
inner-labels' = innerlabels E { GC 4 clearance}

inner role' = innerrole 9 {GC 4 name}

INITIATE USE? REGISTRATION REQUEST
r dINITIATE_USERREGISTRATION

entitytypeeinstigator) = Trusted Path
entitytype(port_label) = LabelObject

The port must be idle and the requested conflict list must include some other user.

INITIA TE_USERREGISTRATIONREQUEST

INITIATE USER REGISTRATION OK. DATUM

dom(g I> {instigator}) = {portlabel, GC}
#(clearance.conflict) > I
data'{instigator} I dataC{instigator} I u {INITIATEUSERREGISTRATIONOKI

BADINITIATEUSERREGISTRATION e 4 STATE [!17Am USER REGiSTRATiONNOT OKRESULT

INITIATE USER REGISTRATION e BAD INTIATE USER REGISTRATION
E) GOOD INITIATE USER REGISTRATION

initiate_user_registration keeps INITIATEUSERREGISTRATION

17

bas ic-types :Module labels :Module basic state Module

The GC Execution of Registration

This is the transition which actually allocates a home directory, the initial users certificate and the two
asociated 14hel objects. These are lodged in root.

OUSERk AEGISTRATION____ _________

ASTATE
home, home-label :E

cetfctcert#7fcare label:E

{RT, home, home -label, certificate, certficate label 14I g'
{RT, home, home -label, certificate, certificate label 14 g
{home,home -label~certificate,certificate label 1 4 outer -labels' =
(home home-label certificate ,certificateLabel} 4 outer-labels
eriyrype' = enfiryrype 0 f(home 4 Alpha,

home label 4 Label Object.
certifltcate label 4 LazbelObject,
certificate -* Certificate F

{home~home label. certificate,certificate label}1 4 role'=
{home~home -label. certificate~ceraificate label)1 4 role
data' =(home, home-label, cerificate~label. certificate} 4 data

in{ome.Plome iabel,ceruficate,certzjicate label) R innerlabels'=
I{home, home-label. certificate.certicate~labell 4 inner-labelsI{homnehomelabel, ceruificate,cerificaie label1) 4 inner role'=

Ihn ehh r I la el ertifir t ce ir cannerel rol[USER_-REGISTRATION_REQUEST
O USERREGISTRAHlON

instigator =GC
dom(g (home_label. certificaie label, certificate, home [J= GCI

"he significant fields are the role, the inner labels and the inner role of the certificate, aid the cuter labels
and roie of the homt directory. All other fields are initialised to complete the sanitisation of the allocated
entities.

GOODUSERREGISTRATION_________ __________

USERREGISTRATIONREQUEST
USERREGISTRATIONOK: DATUM

g'ff{RTJI = gl{RTII ji fcertificaie_.1 abell
gli{ certifcate~label I1I = I{certificate I

g'I~certificaie} I= (home label 1
g'I{ home label) I= I{home}I
g'E{home}I = {RTL}
owaer labels 'i{home label,certificate,certificate label)I 3 (1

outer-labels'(home) = inner-labels(instigator)
rolel(I home~home -label,certificaie,certificatelatbel) I= { inner role(instigaior) I
inner-labels'If home,home-label~cerifcate,certzficate_label)!I (inner-labels(instigator)}

inner role'I{ home,home label~certificate~certiflcaie label) I= { inner role(instigator))

BADUSERREGISTRATION e OSTATEUSER REGISTRATION NOT OK/RESULTI

USERREGISTRATION Ll BADUSERREGISTRATION ED GOODUSERREGISTRATION

user registration keeps USERREGISTRATION

Reviewing and Approving Registrations

A new, putative user has thus registered a desire to use the system. How does an existing user review and
approve the request?

First, he must gain access to the certificate. A user in his home directory has access to the label of root. To
access root he must fist "open" the label object. In root will be the label object of a users certificate. To
open this he must first get the label object into his own g. This involves the "examine" command which
enables a user to augment his g wih elements from the g of an alpha object. He can then open the label of
the certificate which puts the certificate in his g where it can now be reviewed.

Review co pies the data and inner labels and role of a certificate into the user entity where we can assume it
can be subsequently displayed on the trusted path. If the human user is satisified he can instruct the user
command line entity to authorise the certificate. This involves the creation of a copy of the original
certificate except that the outer role indicates the agreement of the existing user. To allow login to succeed
this certificate (strictly its associated label) must be lodged in root. As with the c 'ier create commands
approve certificate allows the parent node which will hold the label object to be specified.

In the following we will look at the open, examine, review certificate, and authorise certificate commands.
The reading and writing of the trusted path by the user shell is elided from this description. These commands
are covered later.

19

[basictypes:Module [labels :Module basicstate :Module

The Open Command

A "labelled object" is actually a pair of objects, a label object pointing in g at another object. Opening a
"labelled object" is the act of copying the g reference to the object from the label object to the instigators g.

OUSER OPEN
A STATE
label .object : E
labelled object : E

{instigator) 4 g' = {instigator} 4 g

outer labels' = outer labels
enirytype' ertitytype
role' = role
{instigator) 4 data' = {instigator} 4 data
inner labels' = inner labels
inner role' = inner-role

USEROPENREQUEST
OUSEROPEN

entitytype(instigator) = User
entitytype(label object) = LabelObject
{labelled object} = g {label-object) I

To open an object one must have the label object already in ones g. The labels of the user must also dominate
the labels of the object to be placed in his g. This is checked not with the outer labels of the labelled object
but with the inner labels of the label object. It is an invariant property of the machine that this equals the
outer labels of the labelled object. This indirection is necessary for our proof approach. The instigators g
may be augmented or may overwrite an existing g entry for the instigator.

GOODUSEROPEN
USER_-OPENREQUEST
USEROPENOK: DATUM

label-object E gI {iinstigator} I
outerlabels(instigator) dominates inner labels(labelob-eit)
g'l{instigator}J c; gI{instigator}J u {labelled-object)
data'l{instigator) I dataf {instigator} I { USEROPENOK}

BADUSEROPEN t 0STATEI UEROPENNOTOKIRESULTn

USEROPEN e BADUSEROPEN $ GOODUSEROPEN

useropen keeps USER_OPEN

20

basic e:ode ule

The Examine Command

Unlike a label object the labelled object may contain many entries in its g. The examine command allows the
instigator to select from amongst these an entry with which to augment its own g. It is this command which
allows the instigator to traverse the branching structure of the alpha hierarchy. There is no explicit security
level check for examine because the open command has already checked the levels before placing the object
in our g. Thus, it is a property of the machine that any alpha object in the g of a user is dominated by the
user.

0 USER EXAMINE ALPHA
ASTATE
alpha-object : E

(instigator} 4 g' = {instigator} 4 g

outer labels' = outer labels
entiryrype' = entitytype
role' = role
{instigator} 4 data' = {instigator} 4 data
inner labels' = inner labels
inner role' = inner role

USER EXAMINE ALPHA REQUEST[OUSER _EXAMINE_ALPHIA

entityrype(instigator) = User
entitytype(alpha object) = Alpha

GOOD USER EXAMINE ALPHA
USER -XAMINEALPHA REQUEST
USER EXAMINEALPHA OK DATUM

alpha_objeCt E g (instigator)
gpt{ iastigator}] g g({ instigator, alphaobject))
data' instigator } Q data[{instigator) I u { USEREXAMINE_ALPHAOK}

BADUSEREXAMINEALPHA a [STATEIUSER EXAMINEALPHANOTOK/RESULT]

USER EXAMINE ALPHA L BADUSEREXAMINEALPHA e GOODUSEREXAMINEALPHA

user-examine-alpha keeps USEREXAMINEALPHA

21

basic_ m es :Module [asc~taMdule]

The Review Certificate Command

This command enables a user to peruse the data value aspects of a certificate, namely, data, inner labels and
inner_role. This command is used for both user login authentication certificates and downgrade certificates
which is where the data values are primarily of use.

-DREWEWCERTIFICATE
A STATE
cerificate : E

g' =g
outer-labels' = outer labels
entitytype' = entiytype
role' = role
{instigator} 4 data' = {instigator} 4 data
{instigator} 4 innerlabels' = {instigator) 4 innerlabels
{instigator) 4 inner-role' = {instigator) 4 inner-role

REVIEW CERTIFICATE REQUEST,F REVIEWCERTIFICATE

entitytype(instigator) = User
entirytype(certificate) = Certificate

certificate E gt{instigator}

Again no explicit security check is required because to be in the users g the certificate must have already
been opened or created there.

GOOD REVIEW CERTIFICATE
REVIEW CERTIFICATEREQUEST
REVIEW CERTIFICATE OK: DATUM

data'l{ instigator) I r datal{ instigator, certificate)) u {REVIEWCERTIFICATEOK}
inner labels'(instigator) = inner labels(certificate)
inner role'(instigator) = inner role(certzficate)

BADREVIEWCERTIFICATE a NOTOKRESULTI

REVIEWCERTIFICATE a BADREVIEW CERTIFICATE E GOOD REVIEWCERTIFICATE

review-certificate keeps REVIEW CERTIFICATE

22

L -

basic-types NModule sjModle icjst:Modulj

The Initiate Certificate Approval Command

Approval of a certificate simply involves creating a copy of it with your own role instead of that of the
certificate you are approving. As this involves allocation of a new certificate entity this command is again
modelled as a two part command involving the garbage collector.

40JNI T APPROVE CERTIFICATE ,,_ ,
A STA 'E
certificate, parent : E
certificate label : SECURITY-LABELS

g" = g

outer labels' = outer.labels
entitytype' = entirytype
role' = role

{GCinstigator 1 4 data' = {GC instigator } 4 data
inner-labels' = inner-labels E { GC 4 certificate-label j
innerrole' = inner-role) f GC I- role(instigator)}

The inf ..n a .,dg.c -is the rale of the instigator and the label for the new certific te. The specification of
the GC data changing is to allow the necessary implementation details, which record the parent alpha object
where the certificate is to be lodged, etc, without obscuring the specification with details.

INIT APPROVE CERTIFICATE REQUEST
4INT_APPROVECERTIFICATE

entitytype(instigator) = User
entieytype(parent) = Alpha
eniitytype(certificate) = Certificate

certificate E g5{instigator}l
parent r g{rinstigator}

SGOODINT APPROVE CERTIFICATEEST
OINIT APPROVECERTIFICATE REQUEST

IN -APPROVE-CERTIFICATE-OK. DATUM

data'[{iinstigator} I r data|{ instigator} I I {INIT APPROVECERTIFICATE OK}
certificate-label dominates outerlabels(certificate)

The label requested for the new certificate must dominate the existing certificate in order to protect the
information contained to the same level as the object from which it was obtained. We don't want premature
downgrading!

BADINITAPPROVECERTIFICATE e 4DSTATE(I r PROVE CFRTIFICATE NOTOK/RESUL7]

INIT APPROVE CERTIFICATE a BAD INIT APPROVE CERTIFICATE
- GOOD iNITAPPR)VE CERTIFICATE

irit-approve-certficate keeps INITAPPROVE CERTIFICATE

23

L.sw w, w * m .- _ - .

basic-ypes :Module basic-state :odule

The Approve Certificate Command

This is the transition which actually creates the new certificate. Both a certificate and a label object for it
are created hence the apparent complexity, because the two objects must be stitched together in g starting
from the parent alpha object and ending with the target alpha object's label object, and all of their fields must be
initialised appropriately.

OAPPROVE CERTIFICATE
ASTATE
certificate, parent : E
new certificate, label object : E

{parent, new certificate, labelobject} g' = {parent, new certficate, labelobject g
{ new certnicate,label object) 4 outer labels =
{new certzficatelabel object] 4 outer-_labels
entirytype' = entitytype G {label object f+ Label Object, new certificate + Certificate I
{new certficate,labelobject} 4 role' = { new certzicate,labelobject} I role
{instigator,new certificatelabel object} 4 data'=
{instigator,new-_certficate dabel object] 4 data

{new certioicate,label object) 4 inner labels =
{new certificate,label-object} 4 inner-labels
{ newcert#icate,label object } 4 inner role? = {new certficatelabelobject! 4 innerrole

APPROVE CERTIFICATE REQUESTF APPROVE CERTIFICATE

instigator = GC

entitytype(parent) = Alpha
entitytype(certificate) = Certificate
dom(g 0 f label object,new certificate)) = { GC}

The parameters which we have obtained from the initiating command by unspecified means involving the
garbage collectors data fields are the certificate to be approved and the parent alpha object where the new
certificate is to be lodged.

GOOD APPROVE CERTIFICATE
APPROVE CERTIFICATEREQUEST
APPROVE-CERTIFICATE OK: DATUM

g'[{parent } r g1{parent 1}1 u {label object)
g'({labelobject }= {new-certificate}
gi{new certificate}] = g({ certificate))
outer labels(parent) dominates outer labels'(iabel.objct)
outerlabels"(new_ cert icate) - inner labels(instigator)
role I label objectnew certificate I I= {inner.role(instigator)}
data'|{instigator}3 r- data|{ instigator) I u {APPROVECERTIFICATE OK}
data'l{ new cert ficate} = datat{ certificate] I
data'l{ label objectl = 0
inner labels'(newcertificate) i inner labels(certificate)
inner-labels'(labelobject) = oaer-labels'(new certificate)
inner role'(newcertfcate) = inner_role(ceraficate)
inner-role'(label.object) = SysOwner

So the parent is set to point to the new label object, which points at the new certificate which points at the
same things as the existing certificate. The outerlabels of the new label object must be dominated by the
labels of the parent in order to preserve the property of the machine that allows open/examine to traverse the
alpha structure without signalling channels. The oitir labels of the new certificate, and hence the inner
labels of the label object, are set as requested in the initiating command which has been lodged in the inner
labels of the garbage collector. Similarly, the role of the new certificate reflects the original instigator,

24

temporarily lodged in the garbage collector's inner role. The setting of all other fields is straighforward, either
a copy from the original certificate or an initialisation to a don't care value which ensures sanitisation of the new
objects.

BAD APPROVECERTIFICATE a OSTATEIAPPROVECER77FICAT_NOTOKRESULT]

APPROVE-CERTIFICATE a BADAPPROVECERTIFICATE 9 GOOD-APPROVECERTIFICATE

approve cerificate keeps APPROVECERTIFICATE

25

The Basic User Commands on the Alpha Hierarchy
Having seen how users are registered and logged in we can now explore some more of the commandsavailable to them. We have seen how users can open label objects to obtain access to the alpha or certificateobjects behind them, and how the g of alpha objects can be extracted to augment the users g, effectively atraiersatl of the alpha structure by successive open/examine pairs. The other commands available are theobvious read and write of alpha objects, and the creation and deletion of alpha objects together with theirassociated label objects. Users can also delete certificates.

26

rV

[basic-types :Module basicstate :Module

The Read Alpha Command for a User

As before no explict security check is required other than that the alpha object is in the user's g because of the open
check which preserves the required security property of the machine.

- USER READ-ALPHA
A STATE

g' = g
outer labels' = outer labels
entitytype' = entitytype
role' = role
{instgator} 4 data' = {instigator) 4 data
inner labels' = inner-labels
inner-role' = inner-role

USER READ ALPHA REQUESTF USE_READALPHA

entitytype(instigator) = User
entiytype(alpha object) = Alpha

-GOODUSERREAD-ALPHA_
USER READ -ALPHA REQUEST
USER-READ-ALPHA-_OK: DATUM

alphaobject E g({instigatorl I
data'({instigator}I Q dataa{ instigator, alphaobject }i .) { USER READALPHAOK}

BAD- USER-R AuALPH - ['S TA TE USER READALPHANOTOKIRESULTI

USERREADALPHA a BADUSERREADALPHA e GOODUSERREADALPHA

userread alpha keeps USERREADALPHA

27

basic types :Module [aiseModule [als:Mode
The Write Alpha Command for a User

While no security check for write downs is required here, because users are defined to be complex sources
in the formal policy formulation of this abstract machine, we nonetheless impose such a check. This is
because we envisage the use of complex sourceness as a solution to the unavoidable covert channels involved
in the user creating and deletine shared aloha obiects not a, nermi~sion , or a u. - to copy data wholesale,

bub t the overt nata transfer we impose the typical no write down relative to the users clearance which is
found in most extant models.

'WUSER WRITE-ALPHA
ASTATE
alpha object : E

g'=g
outer labels' = outer labels
entitytype' = entirytype
role' = role
{instigator, alpha object} 4 data' {instigator, alphaobject} 4 data
inner-labels' = inner-labels
in, r role' = inner role

USER WRITE ALPHAREQUEST,

0Z Sf9 WRITE ALPHA

entitytype(instigator) = User
entitytype(alphaobject) = Alpha

GOOD USERWRITEALPHA
USERWRITEALPHAREQUEST
USERWRITEALPHA OK: DATUM

alpha object E g({instigator} i
outer labels(alphaobject) dominates outerlabels(instigator)
data'l{ instigator) I= data{iinstigator} I u { USERWRITEALPHAOK}
data'({alphaobject I I g datal{ alphaobject, instigator} I

BAD USER WRITEALPHA L_ 4DSTATE[USER WRFEALPHA NOTOK/RESULT]

USER WRITEALPHA a BADUSERWRITEALPHA D GOODUSER WRITE ALPHA

user-write_alpha keeps USERWRITEALPHA

28

basicjtypes :Module sMoe basic-state :Module

The Initiate Create Alpha Command

Creation of an alpha entity requires fjocation of a new alpha entity and its associated label object so once
again this transition is specified in two parts involving the gabage collector. Again intermediate information
is lodged explicitly in the inner controls or implicitly in the garbage collectors data structures.

The information lodged consists of the parent alpha object where the new objIe- i to be inserted and the
label of the new object.

Once again a no write down check is not formally required on this label because users are deemed complex
sources and this time we wish to utilise this fact to allow the useful behaviour of a user.

-ONJT USER CREATEALPHA
ASTAfE
parent : E
label: SECURITY LABELS

g" =g
outer labels' = outer labels
entitytype" = entitytype

role' := role
finstigator, GC} 4 data' = {instigator, GCJ 4 data

inner labes' = inner l=bels M- {GC , labelI
inner role' = inner_,ole IGC * role(instigator)}

INIT USERCREATE ALPHA REQUEST .[DIN1TUSER CREATE_ALPHA

entitytype(instigator) = User
entitylype(parent) = Alpha
parent E g {irstigator} I

I p

GOOD INIT USER CREATE ALPHA
INIT TUSER-CREATEALPHAREQUEST
INIT -USER-_CREATE-_ALPHA-O DATUM

data'({ instigator }I = data({ instigator I I u {INITUSERCREATEALPHAOK}

BADINITUSERCREATE ALPHA E STATE[ItvTUSERCR-ATEALPHA IOTOKIRESULTI

INITUSER CREATE ALPHA ! BAD INIT USER CREATE ALPHA
- GOOD 7NIT_'SERCRATE ALPHA

wit usercreate alpha keeps INIT_ r ISERCREATEALPHA

29

I p. p .: - ..r "

basic-types eMouI basicstt:ode

fhe GC Create Alpha Command

As before the means by which the parent alpha object is conveyed between the intiating command and this
command is underspecified. All other information is lodged in the inner controls of the garbage collector.

T r"?" L C.?AATE ALHA
A STA Tf -

label object : E
alpha object : E
parent : E

(parent, labelobject, alpha objectl 4 g'= (parent, labelobject, alpha object) 4 g
(alpha objectlabel object) 4 outer labels' = {alpha objectlabel object) 4 outer labels

entitytype' = entitytype) [label object 4 LabelObject, alpha object 4 Alpha }
role' = role 9 { label object ' inner role(instigator),

alpha object 1 inner role(instigator)}
(instigator, labelobject, alpha object) 4 data' =
{instigator, label_object, alpha-object} 4 data
{label object, alpha object} 4 inner labels' =
{label-object, alpha-object} 4 inner-labels
inner role' = inner role E {label object innerrole(instigator),

alphwi objct ' inner rcle(instigator) I

USER CREATEALPHAREQUEST,
[OUSER CREATE ALPHA

dom(g {labelobject}) = {GC}
dom(g g, {alphaobject)) = {GC}
instigator = GC

en;ity,pe(parent) = Alpha

GOODUSERCREATE ALPHA_
USER_-CREATE_ALPHAREQUEST
USERCREATE ALPHA OK: DATUM

g'l{parent}| = gf{parent) u {labei.ohject)
g'I{label.object}) = {alphaobject}

g'I{alpha object}l =0
outer labels(parent) dominates outerlabels'(label object)
outer labels'(alpha object) = innerlabels(instigator)
data'{ instigator) I = datal{instigator} I u (USERCREATE_ALPHA_OK }
data'{ label-object I I= 0
data'I{alpha object)) 0 0
inner labels'(labelobject) = inner labels(instigator)
inner labels'(alpha object) = inner labels(instigator)

The new alpha object label object pair are stiched into g starting at the parent, which points at the new label

object. which in turn points at the new alpha object, which has an empty g.

The requested outer labels of the new alpha object are lodged in the garbage collectors inner labels.

The outer label of the label object is not specified other than it must be dominated by the parent's label, in order to
preserve the security property of the alpha storage structure. In reality the user would wish to specify this
value, but, in the same way that a user is a complex source and he can therefore request any label consistent
with his clearance, as he has in this case for the alpha object itself, there is no real check which we need to
enforce on this value. This is not therefore a security oversight. It must however be assigned a user selected
value if there is not to be a storage channel through an uttialised variable when the new entity is allocated.

BADUSERCREATEALPHA e OSTATEUSERCEAT.EALPHA NOTOKRESULTI

30

USER CREATE ALPHA e BADUSERCREATEALPHA Q) GOODUSERCREATEALPHA

user create alpha keeps USERCREATEAL.PHA

31

basic-types :Module basi state :Module

The Delete Alpha Command for Users

This command simply removes a label object from an alpha object's g. This only leads to actual deallocation of
the entities when the garbage collector detects no references to them. Because a user is a complex source
there is not exolicit security check for writing down when the parent object's g is mtied.

', SER _DELETE-ALPHA
A STA TE
parent : E
old label object : E
old alpha object : E

{parent 14 g' {parent) 4 g
outer labels'= outer-labels

entitytype' = entitytype
role' = role
{instigator} 4 data* = {instigator} 4 data
inner-labels' = inner-labels
inner-role' = inner-role

USER DELETL_ALPHAREQUEST -F 4USERDELETEALPHA

entitrtype(instigator) = User
eniytytype(parent) = Alpha
entir type(old labelobject) = Label_Object
eniryype(old alphaobject) = Alpha
old label object E g1{patent I B
oid alphaobject E gl{ old labelobject }

Lr , 7 rtrn r, r, r-r.- I

USER -DELETE ALPHA_REQUEST

USER DELETE ALPHA OK." DATUM

parent E ga{instigator}l

g'lparent} I = gt{ parent } ' { old label_object I
data'({instigator} I = daat{ instigator I I - { USER DELETEALPHAOK I

BADUSERDELETEALPHA e OSTATE[USERDE -ALPHANOTOK1RESULT1

USERDELETEALPHA e BADUSERDELETEALPHA 0 GOOD USER DELETEALPHA

user deletealpha keeps USER_DELETEALPHA

32

basic- typs Module basic-state :Module

The Delete Certificate Command

A certifiwate is a variant of an alpha object in many respects so this command is almost identical to delete
alpha except that, for integrity purposes, it requires that a user can only delete his own certificates and that
the certificates pointer to the taret entity is also removed. Conditional on entitytype this command could be
elided with delete alpha in any real implementation.

The entities of concern are the parent alpha object in which the certificate, or more precisely its label object
is lodged, the certificate and its label object, and finally the alpha object which is the subject of the
certificate.

0DUSER DELETECERTIFICATE
ASTATE
parent : E
certificate : E
labelobject : E
target : E

(parent, certficate} 4 g' = {parent, certificatej 4g
outer labels' = ouer-labels
entitytype' = entitytype
role' = role
{instigator} 4 data' = {instigatorl 4 data
inner labels' = inner labels
inner role' = inner-role

USERDELETECERTIFICATE REQUEST 1
4 USER DELETECERTIFICATE

entitytype(instigator) = User
entitytype(r ", lit) = Alpha
enti yryoerlat'lobject) = LabelObject
entitytype(cer::K sate) = Certificate
entit,-'Ppe(target) = 'abelObject

label object E gl{parent}l
certificate E gf{lahel-object}
target E g[{certiOfcate}1

As always the parent must be in the g of the instigator and the certificate must ')e one of the instigator's, in which
case the parent to label object and certificate to alpha object links are removed from the g relation.

GOOD USERDELETECERTIFICATE
USERDELETE_CERTIFICATEREQUEST
USER DELETECERTIFICATE OK:DATUM

parent E gI{instigator)

role(instigator) = role(certificate)
g' w g \ (parent 1 labelobject, certificate P* target I
data'[{ instigator} I = data({instigator) I u { USER DELETE CERTIFICATEOK}

BADUSERDELETECERTIFICATE a 0 STATEIUsERDFAE-._CERTIFICATENOTOKiRESULT1

USERDELETECERTIFICATE a BAD USER DELETE CERTIFICATE
(D GOOD1 TSERDEL2TECERTIFICATE

user-delete certificate keeps USERDELETECERTIFICATE

33

The Use of Untrusted Software by Users

As described above the user processes, by virtue of being Trojan Horse free processes working under the
direction of humans on a trusted path interface, are given great leeway in the actions which they can
undertake, the creation and deletion of alpha entities for exanmple, which in strict information flow terms
violate a no flows down policy. This is allowed on the basis that human beings lack the patience, dedication,
etc, to utilise complex signalling paths through a constrained interface. We do not assume however that,
given the ability to copy a file wholesale, a subverted user would refrain from such action, even in the face
of detailed auditing. Hence the write command enforces the usual no write down condition relative to the
user's clearance.

As we have argued, such a constraint, which is the norm in extant policy model approaches, prevents users
carrying out their assigned tasks without crippling overclassification of their results. Also the application
specific manipulations modelled by the notions of simple read write are in practice more complex,
spreadsheets, databases, etc. Given the complexity and application specific nature of these transitions our
approach would be intractable if it consisted only of trusted users using irusted software to manipulate data.

Hence, we introduce the notion of untrusted software processes. These entities are assumed to be protected
by floating labels and the no write down condition for these entities is relative to this floating label rather
than the inherited clearance of the user. This allows untrusted software to get on with the job, without
overclassifying results, assuming there is no trojan horse intervention.

To be successful this approach must assume that untrusted software trojan horses will attempt to signal, not
only through shared data between users but also between gamma processes within the domain of a single user
in order to circumvent the efficacy of the high water marks.

For these reasons, while the gamma entities are given the same functionality as the user, in terms of also
being able to create and delete objects, for these entities stringent security controls are in place to ensure no
flows down through signalling channels. In practice this means that such entities can only execute such
functionality within areas of the machine where such signalling is hidden.

The model of operation envisaged which maximises the synergy between human users exercising discretion
and untrusted software being constrained is that users create the environment of directories and files which
create shred information paths and launch untrusted applications with highly constrained, least privilege
access to these structures to achieve actual data manipulation.

We shall first consider the creation and deletion of gamma entities by user entities, then examine the variants
of the commands available to gamma entities, and then look at the interaction between user and gamma
entities.

These latter commands are modelled as simply the reading and writing of gamma entities by user entities.
These are intended to cover the minor interactions of passing parameters on initiation, receiving results on
completion and mediating interaction with the human user using the trusted path. They are not intended to
imply a wholesale copying of data between user and gamma entities.

If this were allowed we would once again be in the scenario of a subverted user being able to copy data
wholesale in a few simple steps. A gamma machine reads the alpha secrets and has its high water mark
raised. The user copies the secrets to itself and then writes to another gamma entity with a low high water
mark. The user interaction does not automatically raise a high water mark thus the second gamma could now
write to a low alpha object achieving the subverted user's aim of releasing data.

It is not possible to convey this semantic distinction without modelling explicitly the nature of the individual
user gamma entity interactions. In this general specification of the approach this is not feasible so this
distinction is left implied. For the formal approach of an operational system these distinctions would need to
be spelt out.

34

basic-tjypes :Module lsMdl icsae:ou

The Initiate Create Gamma Command

This again is a two part transition involving the gabage collector. The information lodged in this case is
simply the role and labels of the user. The data of the garbage collector is also underspecified to imply the
storage of the other necessary data to guide the command, primarily the required g of the new gamma entity.

1INITT_USERCREATEGAMMA ,
AS7ATE

8 =8
outer-labels' = outer labels
entirytype' = entityiype
role' = role
{instigator, GC] 4 data' = {instigator, GC} 4 data
inner-labels' = inner-labes (D {GC 4 outer.labels(instigator) }
inner-role' = inner-role) { GC + role(instigator)}

INIT USER CREATE GAMMAREQUEST,
44NIT_USERCREATE GAMMA

entiiytype(instigator) = User

GOOD INIT USER CREA TEGAMMAFNIT USERCREATE GAMMA REQUEST
INIT-_USER-CREATE-GAMMA OK: DATUM

data'l{instigator}I = datal {instigator} u {JNITUSERCREATEGAMMAOK}

BADINITUSERCREATEGAMMA -E 0STATE (frT USER CREATE GAMMA NOTOK/RESULT)

INIT USERCREATE GAMMA i_ BAD INIT USER CREATE GAMMA
(- GOOD INIT3TSERCREATEGAMMA

init user create gamma keeps INITUSERCREATEGAMMA

35

basic-types M edulee assa:Moule

The Create Gamma Command

Because of the possibility of gamma entities being joined by a user a join entity recording this status must be
allocated with the gamma entity.

The inner labels of the join entity is used to store the users clearance as an upper bound on the level to which
the labels of the gamma machine are allowed to float. The outer labels of both the gamma and join entities
are set to some level dominated by the users clearance, usually bottom, but implementations where the user
sets some initial value are not ruled ouL If the gamma machines g is not empty then the labels of the gamma
and join entities must dominate all entities in the gamma object's g.

The implementation details of how these variations are controlled is implicitly covered by the data structures
of the garbage collector which are deliberately underspecified for this purpose.

4USER CREATE GAMMA
ASTATE
join object : E
gamma object E

user : E

{userjoin_object, gamma object 14 g' = { user,join object, gamma_object } 4 g
{gamma-object, join-object} 4 outer labels' = (gamma object, joinobject) 4 outerlabels
entirytype' = entitytype E { joinobject 4 Join, gammaobject ' Gamma }
role' = role E {join-object 4* inner-role(instigator),

gamma object 4 innerrole(instigator) I
{gamma_object, join-object, instigator} 4 data' =
{ gammaobject, join-object, instigator} 4 data
inner-labels' = inner-labels E {join-object '4 inner labels(instigator),

gamma object ' iraerlabels(instigator) }

inner-role' = inner-role E {join object ' innerrole(instigator),
gamma-object innerrole(instigator) }

USER CREATEGAMMA REQUEST .
OUSERCREATEGAMMA

dom(g 0 {join-object}) = {GC}
dom(g 0 { gamma object) {GC}

instigator = GC
entityrype(user) = User

GOOD USER CREATE GAMMA
USER- CREATE_GAMMAREQUEST
USERCREATEGAMMAOK: DATUM

g'E{user}i = g({user}I o join object, gamma objecti
g'I{join objectI} = (gamma object)
g'I{ gamma,_object)3 (g i{user) } ldom(entirytype' O (Alpha .Label Object))

inner labels(instigator) dominates outer labels'(gamma object)
outer labels'(join object) = outer labels'(gammaobject)
inner Labels'(join object) - irner-iabels(ianstigator)
V e : g'{gamma object}|, outer labels'(oin object) dominates outer labels(e)
data'|{gamma objectjoin object JI =0

BAD USERCREATEGAMMA t S IUSERCREATEGAMM, NOTOKiPESULTI

USER CREATEGAMMA a BADUSER CREATEGAMMA 9 GOOD USER CREATEGAMMA

user create..amma keeps USERCREATEGAMMA

36

basic..rt-pm :Module bai Ndl

The Delete Gamma Command

Because of the presence of the user join functionality we cannot permit the deletion of individual gamma
entities but only joined groups. In practice therefore the command is actually to delete all references to the
join entity. The garbage collector subsequently removes all unreferenced joined entities with no danger of
unmodelled dangling references between joined objects which would otherwise exist.

- USERDELETE GAMMA
A STATE
join object : E

dom(g , {join object}) 4 g' - dom(g 0 {join object}) 4 g
outer labels' a outerlabels
enritylype" - enutytype
role' = role
{instigator} 4 data' = {instigator} 4 data
inner labels' a innerlabels
inner role' = inner role

USERDELETE GAMMA REQUEST[OUSERDFTE GAMMA

entitytype(instigator) = User
entitytype(join object) = Join

GOOD USER DELETE GAMMA
USER_ ELETEE_GAMMAREQUEST
USER DELETE GAMMA OK: DATUM

join object E g[{instigator}l
g = g { join object I
data' = data t { instigator + USERDELETEGAMMAOK }

BADUSERDELETEGAMMA a 0KSTATEusRDELETEGAMMA- '/RESULT]

USER-DELETE GAMMA e BADUSERDELETEGAMMA @e GO. _USERP DELETEGAMMA

user-delete-gamma keeps USERDELETEGAMMA

37

The Manipulation of Alpha Entities by Gamma Entities

The gamma machines can do basically what the user can do in terms of creating/deleting, reading/writing,
opening/examining alpha objects. The security constraints are a little tighter and involve write down checks
using. the gamma machines floating label but the range of functionality is the same. The only things gamma
machines absolutely cannot do are the certificate based operations of segregation of duties and the
creation/deletion of gamma machines.

The Initiate Create Alpha for Gamma Entities

This is essentially as for user create alpha except that the label of the parent must dominate the floating label
of the gamma entity which reflects the worst case sensitivity of the information they might be seeking to leak
in modifying the parents g. This is the write down security check applied to unmrusted code and from which
the complex (trusted) users are exempt. As this check is carried out in the initiating command the actual
creation of the alpha object is identical with user create alpha.

- INIT GAMMACREATE ALPHAF ASTA TE
parent "E
label: SECURITY LABELS

g' g
ou'wer labels' = cu."r labels'
entitytype' = entitytype
role' = role
{instigator, GC} 4 data' = {instigator, GC} 4 data
innerlabels' = inner-labels ({GC + label)
inner-role' = inner-role ({ GC 4 role(instigator)}

INIT GAMMA CREATE ALPHA REQUEST ,[O NiT GAMMACREATEALPHA

enticytype(instigator) = Gamma
entitytype(pareu) = Alpha

GOOD INIT GAMMA CREATEALPHA
INIT- GAMMA_CREATE_ALPHAREQUEST
INITGAMMACREATE ALPHA OK DATUM

parent e g((instigator) I
outer labels(parent) dominates outer labels(instigator)
data'I{ instigator)) r. datal{instigator}l u JINIT GAMMACREATEALPHAOK}

BAD INITGAMMACREATEALPHA a OSTATEIIT-._GAMMA _ CREATE _ALPHANOTOXIRESULT

INIT GAMMA CREATEALPHA a BAD INIT GAMMA CREATE ALPHA
0 GOOD 7NITGAIMACREATEALPHA

sm t.gammacreatealpha keeps INITGAMMACREATEALPHA

38

basic-types :Module lael Nodle[scste Ndule]

The Delete Alpha Command for Gamma Entities

Again the only difference from the user version of the command is the application of a no write down check
using the gamma entity's floating label and the modified parenit.

OGAMMADELETE ALPHA
&S TATE
parent :E
old label objet :E
old aqlpha object :£

tparentl 4 g' = parent) 4 g
outer labels' =outer labels
entitytype' - entirytype
role' = role
(instigator) 4 data' a {inrstigator) 4 data
inner-labels' = inner-labels
inner-role' = inner-role

GAMMADELETEALPHA REQUEST
4DGAMMADELETEALPHA

entitytyn"',instigator) = a-
entitytype(parerst) = Alpha
entutyrype(old label object) =Label Objc

entitytype(old alpha object) =Alpha

old -label-Object e gi{parent 11
old alpha object c- gI{ old label object 11

GOODGAMMA DELETE ALPHA ____________

GAMMA DELETE ALPHA REQUEST
GAMMA DELETE ALPHA OK: DATUM

parent cz gI{instigator)l
outer -labels(parent) dominates outer labels~insfgator)
g'I{jParent) I = g({parentllI\ (old -label -object}1
data'I{ instigator}) = datall instigator) I u I GAMMA DELETE ALPHA_OK)

BAD GAMMA DEL.ETE ALPHA Lb 0 STATE(GAMMAODLEJ",RAOTOKRF~ULTI

GAMMADELETE-,ALPHA tb BAD GAMMA DELETE ALPHA
_ - e GOOD GAMMA DELITEALPHA

gamm~a fielete ylpha keeps GAMMA DELETEALPHA

39

basic types :Module state :Mdl

The Open Alpha Command for Gamma Entities

The "clearance" of a gamma entity is given by the innerJabels of its join entity. If it dominates the
inner -labels of the label object the label of the join group is floated to the lub of its old value and the labelled
objeLs classification. A joined groups floating label is actually the outer labels of all of the joined entities
and the joining entity which must all be floated in unison.

0GAMMA OPEN ALPHA________
A STATE
label object :E
alphq object :E
join object :E

(inistigator} 4 g' = {insdigator) 48g
({join -object} u g~{ join object) 3) 4 outer labels' =
([join object) u.. g~{ oin object))) 4 outer labeis
entitylype' - entitytype
role' = role
[instigator} 4 data' = [instigator} 4 data
inner-labels' = inner-labels
inner-role' = inner-role

GAMMA OPENALPHAREQUEST
IDGAMAAOPENALPH-A

entiytype(instigator) = Gamma
entity rype(label object) = LabelObject
entity rype(alpha objet lh

entitytype(join object) = Juin
instigator E g[{join -object) I
alpha-object E gC { label object) I

GOODGAMMAOPENALPHA_____ __________

GAMMA_-OPEN_-ALPHA_-REQUEST
GAMMAOPENALPHA_-OK DA TUI

label object E gi {instigator}3
inner labels(join object) dominates inner labels(label object)
outer labels'Eljoin object) '-i gl~join object)))I = {lub {inner-labels(label-object),

outer_labels(instigator)) I
alpha objct r= g'[{ instigator))
data'I{instigator} I = datal {instigator))I u (GAMMAOPEN ALPHA OK}

BAD GAMMA OPEN ALPHA IL 4)STATEIGAMMAOPEN ALHA NOTOKIWUL71

GAMMAOPENALPHA L, BAD GAMMA -OPEN-ALPHA (D GOODGAMMAOPEN ALPHA

gamma open alpha keeps GAMMAOPENALPHA

40

[buicq :oue -Modul

The Read Alpha Command for Gamma Entities

Apart from the type constraints this is identical to user read alpha and could be specified and implemented as
such if desired.

- 4GAMMAREADALPHA_____

ASTATE
alpha object :E

outer labels' = outer-labels
entitytype' = entity type
role' - role
I{insigator) 4 data' - [instigator) 4 data
inner-labels' a inner-labels
inner-role' - inner-role

-GAMMA READ_ ALPHA REQUEST,[0GAMMiA READ-ALPHA

entirtyype(iristigator) = Gamma
entatyiype(alpha object) = Alpha

GOOD GAMMA READALPHA[GAMMA READ, ALPHA-REQUEST
GAMMA READ ALPHA OK: DATUM

alpha-object E= gI {insrigatorl 11
data'Ifirsrigator}i - dalaff{instigato, alpha_object Ii u {GAMMAREADALPHA_OKI

BAD GAMMAREADALPHA e ODSTA TE [GAMMA -READ ALPHANOTOKIREStJLT

GAMMAREAD ALPHA a BAD GAMMAREADALPHA E) GOODGAMMAREADALPHA

gamma read alpha keeps GAMMAREAD-ALPHA

41

basic_types :Module s:Module [dule

The Write Alpha Command for Gamma Entities

This simply requires the no write down check that the modified alpha entity dominates the floating label of
the gamma entity. In all other respects (apart from type constraints) it is identical to user write alpha

0GAMMA WRITE ALPHA
A STA TE
alpha object : E

g',,g
outer labels' = outerlabels
entitytype' = entitytype
role' = role
{instigator, alpha object) 4 data'= {instigator, alphaobject} 4 data
inner-labels' = innerlabels
inner-role' = inner role

GAMMA WRITEALPHAREQUEST,
0GAMMA WRITEALPHA

entitylp(instigator) = Gama

entitytype(alpha_object) = Alpha

GOODGAMMA WRITE ALPHA
GAMMAWRITEALPHAREOUEST
G4MMA WRITE-ALPHA OK DATUM

alphaobject E gI {itns!gaor} I
outer -abets(alphaobject) dominates outer_labets(instigator)
data'{ instigator} I= dataf{instigator) I u {GAMMA_WRITEALPHA-OKI
data'l{ alphaobject)3 a data { alpha-object, instigator }

BADGAMMAWRITEALPHA e OSTATE IGAMA WRTE A HA NOTOK/RESULT]

GAMMA WRITE ALPHA a BADGAMMAWRITEALPHA e GOODGAMMAWRITEALPHA

gamma writealpha keeps GAMMAWRITEALPHA

42

basictypes :ModuleM dule

The Examine Alpha Command for Gamma Entities

Apart from the type constraints this is identical to user examine alpha and it could be specified and
implemented as such.

- GAMMA EXAMINE-ALPHA
A STA TE
alpha object : E

{inistigator) 4g'- [instgator) 4g

outer-labels' = outer-labels
entytype' = entitytype
role' = role
{instigator) 4 data' = {instigator} 4 data
inner.labels' = innerlabels

inner-role' a inner-role

GAMMAEXAMINEALPHAREQUEST"[4'GAMMAEXAMINEALPHA

entityrype(instigator) = Gamma
entitytype(alphaobject) = Alpha

rY)Or% f411*f 44 FVyA I,1
7
r 194Ai

GAMMAEXAMINEALPHA REQUEST
GAMMAEXAMINEALPHA OK: DATUM

alphaobject E gl {instigator) I
g'E{insigaior}| c gI{instigator, alpha object }]
data'[{ instigator) I = dataf{ instigator} I u {GAMMAEXAMINE ALPHAOK}

BADGAMMA EXAMINEALPHA !- OSTATEIGAMM_EXAMINEAALpHANOTOKRESULTI

GAMMA EXAMINE ALPHA a BAD GAMMA EXAMINE ALPHA
(GOOD G.4-qMAEXAMTINEALPHA

gamma examinealpha keeps GAMMAEXAMINE-ALPHA

43

basic-types :Module] ic_sae :Module

The Interaction of User and Gamma Entities

Obviously, pgmma objects are only of use if the user shell can communicate results and commands to and
from the gamma shells. Thus we have the reading and writing of gamma objects by the user shells. Also the
joining of untrusted gamma entities so that for all security purposes the gamma machines act as one entity is
useful for modelling the parameter passing nature of untrusted software.

The Read Gamma Command

Once again we see that the only security constraint here is that the object be in the g of the instigator. So
apart from the type constraints this is identical to user read alpha and could be so specified and implemented.

OUSER READ GAMMA
A STA Tf
gamnma object : E

g'=

outer labels'= outer labels
entirytype' = entityrype
role' = role
{instigator} 4 data' = {instigatorl 4 data
inner-labels' = inner-labels
inner role' = inner role

USER READGAMMAREQUET
USERREADGA.MA-

entitylype(instigawr) = User

entitytype(gammaobject) = Gamma

-G0,DUS US ER-READGAMMAs
USER E READ GAMMAREQUEST
USER READGAMMAOK. DATUM

gamma object E gl {instigator} I
data'l{ instigator) I Q (datal{ instigator, gammaobject} I u { USERREADGAMMA_OK])

BADUSERREADGAMMA a ODSTATE[USERREADGAMMANOTOKIRESULTI

USER READ GAMMA - BADUSERREADGAMMA 0 GOODUSERREADGAMMA

user-readgamma keeps USERREADGAMMA

44

1P

basic-types :Module labels :Module basic-state :Module

The Write Gamma Command

This command allows a user to write data to a gamma machine and/or bump up the join group's floating label to
some new label. This latter feature may be requited when the human user decides to enter some classified
data into a file, for example.

0USER WRITE GAMMA
ASTATE
gamma object E
join object : E
new label : SECURITYLABELS

g8 ' g
({joinobject} u glfjoin objectl)) 4 outer labels' =
({joinobject} u gIjoin-object} 1) 4 outer-labels

entitytype' - entitytype
role' = role
{instigator, gamma-object) 4 data' = {instigator, gammaobject} 4 data
inner-labels' = inner-labels
inner role' = inner role

r-USERWRITE GAMMAREQUEST "1
0 USERWRITEGAMMA

entitytype(instigator) = User
entityt) pe(gamma object) = Gamma
entitytype(join object) = Join
gammaobject E gl{joinobject}|

GOOD USERWRITEGAMMA
USERWRITE-GAMMA REQUEST
USERWRITE GAMMA-OK." DATUM

gammaobject E gi lnstigator} I
outerlabelstinstigator) dominates newlabel
new label dominates outer labels(join object)
outerlabels'({join object } u gljoin object I I = {newlabel }
data'l{instigator}) = data[{ instigator} u {USERWRITE GAMMA_OK}
data'{ gamma object c | datal{ gamma object, instigator}

BADUSERWRITEGAMMA a OSTATEUSER_WRITEGfMMANOTOKiRESULT

USER WRITE GAMMA e BAD USER WRITE GAMMA 9 GOOD USER WRITE GAMMA

user write.gamma keeps USER_WRITEGAMMA

45

basic:types :Module labels Module i lbasic state :Module

The Join Gamma Entities Command

In a join group the outer labels of the group float together and represent the high water mark of the group.

The inner label of the join entity of a group is the clearance of the group.

A user can refer to individual gamma machines or a group using his g entry for the join entity. In security
terms all the entities of a group are one but when two groups are joined the user does not wish to lose his
references to the individual subgroups for functionality purposes. When two groups are joined by reference to
their join entities the "high water marks" as reflected by those two entities are lub'ed to produce the new high
water marks for the new group.

The manner in which this is specified below means that such recursive joins result in individual subgroups
within the group haing disparate clearances. This is not a security problem. The clearances of a froup can
only be below the sir.gle clearance of the user who created them and who is the only one who can join them.
The notion of giving a group a clearance below the users actual clearance is a least privilege notion which
• '" user is choosing to override when joining groups with disparate clearances. For security purposes all that
matters is that the high water mark is correct.

4USER JOINGAMMA
A STA TE

ioinljoin2. E

(joinl , join2 4 g' = {oinl, join2 }4 g
({joinljoin2} t-) gl{joinl join2}1 4 outer labels' =
({joinljoin2} gC{joinl1join2 }) 4 outer-labels
entityrype' = entitytype
role' = role
{instigator} 4data' = {instigator) 4 data
inner label,' = inwer labels
inner role' = inner-role

USERJOINGAMMAREQUEST,
0 USERJOINGAMMA

entiryrype(instigator) = User

I entittype(joinI) = Join
entityrype(Join2) = Join

GOOD USER JOIN GAMMA
USERJOIN GAMMA _REQUEST
USERJOINGAMMAOK DATUM

join) e gI{instigator)}
join2 e g|{instigator }

g'{joinl}I = g({jinljoin2) } {join2}

g'({join2 }1 = gt{joinl join2 }| u [join]}
data'l{instigator)} = datal{ instigator } I u { USER JOINGAMMAOK }
outer- labe!s' "joi, , join2 } u gJjoin l join2 }II =

{lub (outer labels(join1), outerlabels(join2f) }

BADUSERIOINGAMMA e 4)STATEI USERJOt N_GAMMA_AOTOK/RESULT.

USER JOIN GAMMA t BAD USER JOIN GAMMA 0 GOOD USER JOIN GAMMA

userjoin_gamma keeps USER JOINGAMMA

46

Input and Output

Input and Ouput by the machine from/to human users or other machines is modelled by the trusted path port
entities. These are modelled as active and can instigate the input transition where their data, as far as the
snecification goes, spontaneously changes.

This underspecification allows modelling of the changes to a keyboard buffer, etc. The trustd command line
interpreter entities, users, can read and write the data of the trusted path entities. It is assumed that the data
of a trusted path entitiy is in some way being displayed to the humans so the writing of data to the trusted
path serves for modelling output.

The specification is trying to capture the idea of the complex, trusted command line interpreter maintaining a
windows interface on the input/ouput device represented by the trusted path entity. The trusted path is
therefore multi-level and trusted and is simply an extension of the complex user entity which it is convenient
to model separately. For these reasons this specification does not make any attempt to use the controls of the
trusted path entities to control any flows to/from the user entity. It could be extended to have devices which
restrict the level at which users login etc and single level devices could be modelled. If we modelled a
trusted path entity per window for example each window could be treated as a simple source with a high
water mark, etc. These extensions simply require more commands for spawning windows, etc, under the
control of the user command line interpreter entity.

47

basictypes :Module basic-staLe :Module

The Input of Data Command

As stated this command simply wishes to capture, by underspecification, the fact that the input devices data
changes, spontaneously as far as the machine is concerned but due to keyboard or mouse activity in reality.

If specified as simply letting data change this specification would allow the trusted devices to read the data
of any entity in the system. In order to stress that these implementations are not intended we parachute in a
new type representing data in the outside world and a conversion function to encode it as machine data. In
this way, because there is no conversion from data to outputs to inputs and thereby back to data the
specification forces an interpretation of genuine input.

(INPUT]

I input : INPUT >- DATUM

GET INPUT
ASTATE
in? : INPUT

entitytype(instigator) = TrustedPath
daia'{instigator)i c; daial{instigaior} I u {input(in?))

g =g
outer-labels' = outer labels
entitytype' = entitytype
role' = role
{instigator} 4 data' = {instigator} 4data
inner labels' = inner labels
inner role' = inner-role

getinpwt keeps GET-INPUT

48

baictyesNule labls:Module baic-state NModule

The Output Command

Similarly for output we wish to show tha potentially any attribute of the trusted path device can be encoded
for display to an external observer. So we define an output datatype with conversion functions for the defined
attributes.

OUTPUT::= data out C IP DATUM)) I label-out((SECURITY LABELS I I
role-_out IDENTITY) I type out 4 ENTITY_TYPE A

PUT OUTPUT
A STATE
out!: OUTPUT

entitytype(instigator) = TrustedPath

g= g
outer-labels' = outer labels
entitytype' = entiyrype
role' = role

data' = data
inner labels' = inner labels

inner-role' = inner-role
out! E { data out(data[{instigator}1), type out(entirytype(insUgator)),

role oui(role(instigator)), role oui(inner role(instigator)),
labe,7 out(outer-labels(instigaor)), label-out(innerlabels(instigator))}

put_output keeps PUTOUTPUT

49

basic types :Module basicstate :Module

Reading the Input Device

In reality the interface between a command line interpreter process and its 10 devices would be highly
structured as in the X protocols or the MaCHO interface. For simplicity in this top-level exposition of the
abstract machine we simply model this as reading and writing the 10 device.

- USER READPATH
A STA TE
path : E

g, = g

outer labeL)' = outer-labels
entityrype' , entitytype
role' = role
{instigator} 4 data' = {instigator} 4 data
inner labels' = inner labels
inner role' = inner role

USERREADPATH REQUEST[4USER_READPATH

entitytype(instigator) = User
entitytype(path) = Trusted Path

GOODUSERREADPATHF USER _READ-PATH REQUEST

USERREADPATHOK : DATUM

path E gi {instigator} I
data'[{ instigator IJ (data { instigator, path)]u { USERREADPATHOKI)

BADUSERREADPATt e STATEIUSER READPATH NOTOK/RESULTI

USERREADPATH _ BAD USERREADPATH E GOODUSERREADPATH

userread path keeps USERREADPATtt

50

L -m m

basic-types :Module basicstate :Module

Writing the Output Device

As for read path, this specification that the user command line interpreter process =~in simply write to the
output device is a simplifying abstraction of what would in reality be a complex functional interface.

- OUSER WRITEPATH
t STA TE
path : E

g" = g
outer-labels' = outer-labels

entitytype' = erirytype
role' = role
{instigator. path} 4 data' = [instigator, path) 4 data
inner-labels' = inner labels
inner role' = inner role

USER WRITEPATHREQUEST[4USERWRITE_PATH

entitytype(istigator) = User
entitytype(path) = TrustedPath

GOOD USERWRITEPATH
USER WRITE-PATHREQUEST
USER WRITE PATH OK: DATUM

path E gl {instigator} I
data'({instigator}= datal{ instigator} I u { USERWRITE PATHOK}

data'l{path}) 5 datat{path, instigator}I

BADUSERWRITEPATH e OSTATEIUSFRWRJTh PATH NOTOK/RESULT

USERWRITEPATH e BADUSERWRITEPATH S GOOD USER WRITE PATtI

user write.yath keeps USERWRITEPATi

51

The Downgrading of Alpha Data

Last but not least we come to the downgrade commands. This is a separation of duty transition which, as we
have seen in user registration, is modelled by the use of certificates.

Only the data of alpha objects can be downgraded and this involves copying the data to a new alpha entity in
the alpha structure.

We do not allow downgrading by simply modifying the labels on an alpha entity because this alters the ability
to traverse the tee structure as well as see the data. The information flo impact of this in terms of the
proof analysis technique of "views" is intractable and the covert channels available through ordering make
this unacceptable.

By using a copy to a new entity mechanism we introduce a functionality problem in that users do not wish to
keep updating references to entities simply because they have been downgraded. This is a higher level
naming resolution mechanism problem which we can model relatively easily because of the label object
mechanisms already in place.

Downgrading is initialed by a user creating a certificate which points at the label object of the alpha object
to be downgraded and which contains a snapshot of that objects data. This effects the freezing of data being
downgraded.

Subsequent users can concurr with the downgrade by authorising existing certificates using review and
authorise certificate, or by creating new certificates of their own. The danger with the latter approach is that
when the actual commitment of the downgrade is attempted that the certificates will have captured different
versions of the data because of changes to the document between certificate creations. If the certificates do
not agree exactly on the data to be downgraded the downgrade will not occur.

The actual commit downgrade creates a new alpha object, copies the agreed certificate data to it and assigns
the labels indicated by the certificates. It then redirects the old label object to this new alpha object and
modifies the labels of the label object accordingly.

The approach to specifying certificates as holding copies of the data to be downgraded, protected by the
labels of the certificate at the pre-downgrade level, means that the certificates must formally be regarded as
complex sources, which is not really a surprise seeing as they are simply passive extensions of the human
users expression of discretionary security decisions which are not controllable in terms of a normal lattice
flow.

This problem could be amelioraled if desired by making certificates analogous to label objects rather than
alpha objects. Thus a certificate would contain an indirection to an object containing the copy of the data to
be downgraded. This would require however extending the details of the various data structures to hold the
necessary labels, the new labels for the downgraded object, the labels of the copy of the putative downgraded
data, etc. For the purposes of this exposition the general nature of using certificates is sufficient and such
details have been avoided.

52

L -- __

basic-types :Modl Isbasiostat :Module

The Initiate Downgrade Request Command

Once again dhe creation of a certificate requires that this is modelled as a two part transition involving the
garbage collector.

OINTUSER REQUEST DO WNGRADE
A STA TE
parent :E
target - abel :E
new-label: SECURITYLABELS

g, = g
outer labels' = outer labels
entitytype' = entityrype
role' = role
[instigator, GC} 4 data' = (insstigabor, GC) 4 data
inner-labels' = inner-labels @ [GC 14 new - abel)I
inner-role' = inner-role ED { GC 14 role(instigator) I

INIT_-USERREQ UEST DOWNGRADE REQUEST,[NITUSERREQUEST-DOWNGRADE

entytype(instigator) = User

enhiyrype(parent) = Alpha
enttylpetaretlabel) = LabelObject

-GOODINSTUSER REQUESTDOWNGRADE[NITUSER_-REQUEST_-DO WNGRADE -REQUEST
INITUSERREQUEST DO W'NGRADEOK: DATUM

parent E gg {instigatorl I
target label E gO [instigator) I
datai1{instigator}3 = dataC [instigator} I I{) INITUSER REQUESTDOWNGRADEOK}

BA!) INIT USER REQUESTDOWNGRADE n
- r-SE-EUSTLONRAENTOKIRESULTI

INST USER REQUESTDOWNGRADE a BAD INIT USER REQUEST DOWNGRADE
E) GO)OD_7Nrr-fTSERREQLTEST DOWNGRADE

init user request downgrade keeps INIT USER REQUESTDOWNGRADE

53

basic typs Moduele

The GC Creation of the Downgrade Certificate

A certificate is treated as a variant of an alpha object and thus requires in the normal way that it possesses
its own label object.

O)USER -REQUEST_DOWNGRADE
A STA TE
label object :E
certificate :E
parent :E
target -label: E
target :E

[parent, label object, certificate) 1 g' = [parent, label object, certificate 1 4g
{c'rtiflcate, label objectl 4 outer labels' = {ce.-iicate, label object} 4 outer labels
crautype' = entiryrype T, (certificate '4 Certificate, label object '4 Label-ObjectI
{certificate,label object} 4 role' = {certiflcate,label object} 4 role
finstigator, certificate, label object) 4 data'=
{instigaior, certificate, Label-object} 4 data
[certificate, label objectl 4 inner labels' = [certificate, label object} 4 inner labels
{ certificate, label object) 4 inner-role' = f{certificate, label-Object) 4 inner-role

-USERREQUESTDOWNGRADE-REQUEST,
4) LSER-REQUESTDOWNGRADE

dom(g 0 { label-object) = {GCI
dom(g 0 (certificate 1) = f{GC}
instigator = GC
entirytype(pareru) = Alpha
entityrype(target_ label) = La bel-Object
{target] = gl{ target_label}I

SGOODUSER_REQUEST DO WNGRADE_____________
USER -REQ UEST -DOWNGRADE-REQUEST
USER REQUESTDOWNGRADE OK: DATUM

outer labels(parent) dominate. outer-labels' (label object)
outcrl- abels'(certificate) = iwner isbels(target-label)
inner -labels'(labeL object) = inner-labels(target label)
inner-lbe'(certifcate) = inner-labels(instigator)
role'li{certificate.Jabel object II = {inner -role(irnstigator)}
g'iparent))3 g({parent }1 ui [label-object)
g'I label-object3 I= (certificatelI
S11{certificate) I= (target-label }
data'E~instigatorll I dafa({instigator) I u f USER REQUEST DO WNGRADEOK)
data'I{ certificate }I dataf {targetili
data'Ilabel-objectl I = 0

merro' >e r1 oe~w~~oet} inrle(istigator)}

BAD USER-REQUESTDOWNGRADE e 4)STAT-EIUSR REQUEST DOWNGRADE NOT OKIRESUILTI

USERREQUEST DO WNGRADE e BAD USER REQUEST DOWNGRADE
6) GOODITSERREQUTEST DOWNGRADE

ser request downgrade keeps USER REQUESTDOWNGRADE

54

Sbasic-types :Module] Ilabels :Module][basic-state :Module]

The Initiate Downgrade Command

The actual commitment of a downgrade requires the creation of a new alpha object. Thus this transtion must
once again be modelled as a two part command involving the garbage collector.

. ITNrTUSER DOWNGRADEALPHA
A STA TE
certificates : P E
target label : E
label: SECURITY LABELS

g =g
outer labels' = outer-labels
entitytype' = entitytype
role' = role
(instigator, GC} 4 data' = (instigator, GC} 4 data
inner-labels' = innerlabels 9 {GC + label}
inner role' = inner-role ED {GC 4 role(instigator)}

INIT USER DOWNGRADE ALPHA REQUEST
(DINITUSER DOWNGRADEALPHA

entitytype(instigator) = User
entitytype(target label) = LabelObject
V e : certificates - (entityype(e) = Certificate A

gl{e}I= {target label} A

dataa{ e}1 = datalcertificatesl)
inneJabelsicertificates3 = {label}

GOOD INIT USERDOWNGRADE ALPHA
INITUSER_-DO147-GRADEALPHA_ REQUEST
PN7_USERDOWNGRADE ALPHAOK DATUM

certificates c g[{instigator})
V e : certificates u {rargetlabelinstigator}

(outerlabels(e)).conflict roleLcertificatesl
data'{ instigator}I = data[{ instigator}) u { INITUSERDOWNGRADEALPHA OK}
datacertificates] C data'1{GC}

BAD INITUSERDOWNGRADE_ALPHA a STATEl

INITUSERDOWNGRADEALPHA a BAD INIT USER DOWNGRADE ALPHA
-) GOOD 7NITSERDOWNGRDEALPHA

inituser-downgradealpha keeps INITUSERDOWNGRADEALPHIA

55

basicjypes :Mlsduveoduj basicsa Mde

The GC Execution of the Downgrade Command

This command creates the new alpha object and initialises it with the data from the certificates. It Iinks this
into the existing label object and adjusts its inner labels.

4OUSERDOWNGRADEALPHA _______________

A STA TE
target label :E
new _target :E

(target label, new target) 4 g' = {target label, new target) 4 g
Inew _target) 4 outer -labels' = (new _target) 4 outer-labels
entitytype' - enlitytype ED { new target,+4 Alpha)I
role' a roles { new-target * inner -role(instigator))
(instigator, new _target) 4 data' = I(instigator, new-target) 4 data
(target -labelnew target) 4 inner labels' = { tarket-label,new-target) 4 inner-labels
inner-role' = inner-role (D {new target 14 inner role(instigator) I

USERDOWNGRADEALPHA-REQUEST,
r 0'SERDOWNGRADE-ALPHA

doin(g P {new ~target}) = GC}
instigator = GC
entity type(target label) = Label Object

GOODUSERDOWNGRADEALPHA ____________

USER DO WNGRADEALPHA-REQUEST
USERDO WNGRADE ALPHA OK: DATUM

g'f (ta -get label} I = (new -target}
g'({newtarget) I = 0
outer -labels'(new target) = inner-labels(instigator)
datalinstigator}3 - datall instigator}i I u{ USER DOWNGRADEALPHA_OK)

L data'[{newtargetll r- data((instigator))I
inner-labels'(tar get label) = inner -labels(instigator)
inner-labels'(new target) = inner labels(instigator)

BADUSER DOWNGRADEALPHA e OSAEUSRDWG LEALI NOT-OKIRESULT]

USER DO WNGRADEALPHA e BAD USER DOWNGRADEALPHA

e GOOD_(-TSERDO WNGRADE ALPHA

asser downgrade alpha keeps USER DOWNGRADEALPHA

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known) ..

Overafl securty dassification of sheet .. UNCLASSIFIED ...
(As far as possle this sheet should contain only unclassified informaion. if it is necessary to enter classtfied Inforion, tfe field cnoerned
rrx.st be marked to Indicate the dassificaton eg (R), (C) or (S).

Oilginators Reference/Report No. Month Year

REPORT 91022 APRIL 1991

OdgInators Name and Location

RSRE, St Andrews Road
Malvem, Worcs WR14 3PS

Monitoring Agency Name and Location

Tile

AN EXAMPLE MACHINE USED FOR DEVELOPING A PROOF STRATEGY
FOR SECURE SYSTEMS

Report Security Classification Title Classification (U, R, C or S)
UNCLASSIFIED U

Foreign Language Title (in the case of translations)

Conference Detaiis

Agency Reference Contract Number and Period

SLS 42c/720
Project Number Other References

Authors Pagination and Ref

TERRY, P F 56

Abstract

This report describes a machine which is an abstraction of the archetypal Command, Control,
Communications and Information (C31) system which system developers meet in procurement requests,
operational requirements, invitations to tender, etc, from government and military agencies.

The purpose of this report is to set the scope of complexity of structure, functionality and policy which we
believe the SMITE approach to secure systems development can encompass. It thus provides
background and motivation for future research and encourages those involved in secure systems
procurement to investigate further the SMITE approach.

The Abstract Machine is first described in English with pictures and subsequently in the Z specification
language.

Abstract Classmlcaion (U,R,C or S)
U

Descrptors

Disbtbuvon Statement (Enter any limitations on the dtributlon of the document)

UNLIMITED

am"

